• Title/Summary/Keyword: Flow simulation facility

Search Result 152, Processing Time 0.027 seconds

Characterization Tests on the SIT Injection Capability of the ATLAS for an APR1400 Simulation (APR1400 모의를 위한 ATLAS 안전주입탱크의 주입 성능에 관한 특성 시험)

  • Park, Hyun-Sik;Choi, Nam-Hyun;Park, Choon-Kyung;Kim, Yeon-Sik
    • Journal of Energy Engineering
    • /
    • v.17 no.2
    • /
    • pp.67-76
    • /
    • 2008
  • A thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), has been constructed at KAERI (Korea Atomic Energy Research Institute). Recently several integral effect tests for the reflood period of a LBLOCA (Large Break LOss of Coolant Accident) of the APR1400 have been performed with the ATLAS. In the APR1400 a high flow condition is changed to a low flow condition due to an fluidic device during an operation of the SIT. As the self-controlled fluidic device was not installed in the ATLAS, a set of characterization tests was performed to simulate its injection capability from the SIT for the APR1400 simulation. In the ATLAS the required SIT flow rate in the high flow condition was acquired by installing orifices with an optimized flow area to throttle the SIT discharge line and the low flow condition was achieved by changing the opening of the flow control valve in the SIT injection line. The test results showed that the safety injection systems of the ATLAS could simulate the required high and low flow rates of the SIT for the APR1400 simulation efficiently.

Design and Cold Test of Semi-Freejet High Altitude Environment Simulation Test Facility for High-Speed Vehicle (초고속 비행체를 위한 준 자유흐름식 고공환경 모사시험설비의 설계 및 상온실험)

  • Lee, Seongmin;Yu, Isang;Park, Jinsu;Ko, Youngsung;Kim, Sunjin;Lee, Jungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.115-124
    • /
    • 2018
  • In this study, a cold flow test was carried out on a high-speed vehicle facility with a high-altitude environment simulator. Variable test was carried out according to the blockage ratio, angle, and length of the test model. It is confirmed that the blockage rate can be operated in the range of 40%, and that the model should be selected at an angle of 45 degrees or less. The variables of length are less dominant compared to the variables of blockage rate and angle. Through this, a database is obtained according to the parameters of the conical model of the high-speed vehicle test facility.

Vulnerability Evaluation for Monitoring Wide Area Outage in Transmission Systems (송전 계통 감시 시스템을 위한 취약도 평가 방법 개발)

  • Kim, Jin-Hwan;Lim, Il-Hyung;Lee, Seung-Jae;Choi, Myeon-Song;Lim, Seong-Il;Kim, Sang-Tae;Jin, Bo-Gun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.506-514
    • /
    • 2010
  • Defense systems are needed to prevent catastrophic failures of a power grid due to cascaded events. Cascaded events can be occurred by power flow overload. Especially, it is the most dangerous problem that overload line is outage, because it can make the power system face danger of cascaded. In this paper, vulnerability evaluation for monitoring wide are outage is proposed using by configuration information of transmission systems. This method of vulnerability evaluation is considered direct effect and indirect effect of power flow, especially overload. What is more, it can be used when the configuration of power system changes, as simple fault occurs or maintenance of facility. In the case studies, the estimation and simulation network have been testified and analysed in PSSE and C programming.

Determining transfer barch sizes to minimize work-in-process in manufacturing systems

  • Kim, Jonghwa
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.234-241
    • /
    • 1996
  • Trip-based material handling systems such as AGV systems, lift trucks, etc. are often designed with a given flow matrix (or FROM-TO chart) which is usually treated as the number of loaded trips that the devices must perform per unit time between the stations. In reality, the number of trips that would result from parts flow in a facility is dictated by the transfer batch size, i.e., the number of parts that are transferred from one station to the next in one trip. In this paper, we present analytical and simulation results aimed at determining optimal or near-optimal transfer batch sizes in manufacturing systems.

  • PDF

Wastewater process modeling

  • Serdarevic, Amra;Dzubur, Alma
    • Coupled systems mechanics
    • /
    • v.5 no.1
    • /
    • pp.21-39
    • /
    • 2016
  • Wastewater process models are the essential tools for understanding relevant aspects of wastewater treatment system. Wastewater process modeling provides more options for upgrades and better understanding of new plant design, as well as improvements of operational controls. The software packages (BioWin, GPS-X, Aqua designer, etc) solve a series of simulated equations simultaneously in order to propose several solutions for a specific facility. Research and implementation of wastewater process modeling in combination with computational fluid dynamics enable testing for improvements of flow characteristics for WWTP and at the same time exam biological, physical, and chemical characteristics of the flow. Application of WWTP models requires broad knowledge of the process and expertise in modeling. Therefore, an efficient and good modeling practice requires both experience and set of proper guidelines as a background.

Evaluation of Left-Turn Passages for Bicycle Traffic in Mixed Traffic Stream at Signalized Intersections (혼합교통류 신호교차로에서 자전거교통 좌회전 통행방식 평가연구)

  • Joo, Shin-Hye;Oh, Cheol;Lee, Sang-Soo
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.145-155
    • /
    • 2012
  • PURPOSES: This study proposes a novel method based on microscopic simulation models to evaluate bicycle passing ways in mixed traffic flow conditions at signalized intersections. METHODS: Both operational efficiency and safety are taken into consideration in the evaluation. A widely used performance measure, delay, is used for evaluating the operational efficiency. Regarding the safety evaluation, surrogate safety measures (SSM) to represent traffic conflicts and the level of crash severity, DeltaS and Max.DeltaV, are applied in the proposed method. RESULTS: Extensive simulations and statistical tests show that an integrated bike-box way is identified as the best in terms of operational efficiency and safety. CONCLUSIONS: The proposed method and outcomes of this study will be valuable for bicycle traffic operations and facility design.

Development of an active gust generation mechanism on a wind tunnel for wind engineering and industrial aerodynamics applications

  • Haan, Fred L. Jr.;Sarkar, Partha P.;Spencer-Berger, Nicholas J.
    • Wind and Structures
    • /
    • v.9 no.5
    • /
    • pp.369-386
    • /
    • 2006
  • A combination Aerodynamic/Atmospheric Boundary Layer (AABL) Wind and Gust Tunnel with a unique active gust generation capability has been developed for wind engineering and industrial aerodynamics applications. This facility is a cornerstone component of the Wind Simulation and Testing (WiST) Laboratory of the Department of Aerospace Engineering at Iowa State University (ISU). The AABL Wind and Gust tunnel is primarily a closed-circuit tunnel that can be also operated in open-return mode. It is designed to accommodate two test sections ($2.44m{\times}1.83m$ and $2.44m{\times}2.21m$) with a maximum wind speed capability of 53 m/s. The gust generator is capable of producing non-stationary gust magnitudes around 27% of the mean flow speed. This paper describes the motivation for developing this gust generator and the work related to its design and testing.

Multi-Ejector Design for High Altitude Simulation (고고도 환경 모사를 위한 멀티 이젝터 설계)

  • NamKoung, Hyuck-Joon;Shim, Chang-Yol;Lee, Jae-Ho;Park, Sun-Sang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.705-708
    • /
    • 2011
  • Ejector system can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an design procedure on the configuration and operating condition of multi-ejector for the various high altitude simulation.

  • PDF

The Performance Analysis Method with New Pressure Loss and Leakage Flow Models of Regenerative Blower

  • Lee, Chan;Kil, Hyun Gwon;Kim, Kwang Yeong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.221-229
    • /
    • 2015
  • For efficient design process of regenerative blower, the present study provides new generalized pressure and leakage flow loss models, which can be used in the performance analysis method of regenerative blower. The present performance analysis on designed blower is made by incorporating momentum exchange theory between impellers and side channel with mean line analysis method, and its pressure loss and leakage flow models are generalized from the related fluid mechanics correlations which can be expressed in terms of blower design variables. The present performance analysis method is applied to four existing models for verifying its prediction accuracy, and the prediction and the test results agreed well within a few percentage of relative error. Furthermore, the present performance analysis method is also applied in developing a new blower used for fuel cell application, and the newly designed blower is manufactured and tested through chamber-type test facility. The performance prediction by the present method agreed well with the test result and also with the CFD simulation results. From the comparison results, the present performance analysis method is shown to be suitable for the actual design practice of regenerative blower.

Design Study of a Simulation Duct for Gas Turbine Engine Operations (가스터빈엔진을 모의하기 위한 시뮬레이션덕트 설계 연구)

  • Im, Ju Hyun;Kim, Sun Je;Kim, Myung Ho;Kim, You Il;Kim, Yeong Ryeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.124-131
    • /
    • 2019
  • A design study of gas turbine engine simulation duct was conducted to investigate the operating characteristics and control gain tunning of the Altitude Engine Test Facility(AETF). The simulation duct design involved testing variable spike nozzle and ISO standard choking nozzle to verify the measurements such as mass flow rate and thrust. The simulation duct air flow area was designed to satisfy Ma 0.4 at the aerodynamic interface plane(AIP) at engine design condition. The test conditions for verifying the AETF controls and measurement devices were deduced from 1D analysis and CFD calculation results. The spike-cone driving part was designed to withstand the applied aero-load, and satisfy the axial traversing speed of 10 mm/s at whole operation envelops.