• Title/Summary/Keyword: Flow pump

Search Result 1,786, Processing Time 0.029 seconds

Development of the Driving Pump for the Super-cavitation & High-speed Cavitation Tunnel (초공동 고속 캐비테이션 터널 구동펌프 개발)

  • Ahn, Jong-Woo;Kim, Gun-Do;Paik, Bu-Geun;Kim, Kyoung-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.153-160
    • /
    • 2018
  • In order to develop the driving pump for High-speed Cavitation Tunnel(HCT) which can experiment the super-cavitating submerged body, KRISO decided on the pump specification, designed the mixed-flow pump on the basis of the existing pump data and predicted the performance of the design pump using commercial CFD code (CFX-10). After the manufacture and installation of the driving pump, KRISO conducted the trial-test for HCT, analyzed the pump performance and compared trial-test results to those of design stage. The trial-test items for the HCT driving pump are measurements of output current/voltage at the inverter of the driving pump and the flow velocity in the HCT test section. The trial-test results showed the decrease in the flow rate of about 4.6% and the increase in pump head of about 8%, compared with those of the pump prediction. After the trial-test, the performance of the driving pump is predicted using CFX-10 with measured flowrates and pump rotational velocities. Though there is some difference between trial-test and prediction results due to inadequate motor data, it is thought that the tendency is reasonable. It is found that CFX-10 is useful to predict a mixed-flow pump.

A Study on the Break-down Characteristics of a Screw-type Centrifugal Pump due to Air Entrainment (공기흡입에 의한 스크류식 원심펌프의 양수불능 특성에 관한 연구)

  • Kim, You-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.58-63
    • /
    • 2003
  • The performance of turbo pump drops rapidly and it gets into break-down when the void fraction reaches above the threshold value because the impeller flow passage is choked up with air bubbles. Phenomenological understanding of break-down and pumping recovery mechanisms under air-water two-phase flow conditions are therefore important for pump designers and essential assignment for researchers. In this paper, we investigated the characteristics of break-down and pumping recovery due to entrained air occurring inside a screw-type centrifugal pump which has a wide flow passage mainly through the findings of suction and discharge pressures, rotational speed, flow rate measurements and visualization.

Flow Analyses around Intake within Sump in a Pump Station (펌프장에서 Sump내 흡입구 주위의 유동해석)

  • Roh Hyung-Woon;Kim Jae-Soo;Suh Sang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.597-600
    • /
    • 2002
  • In general, the function of intake structure, whether it be a open channel, a fully wetted tunnel, a sump or a tank, is to supply an evenly distributed flow to a pump station. An even distribution of flow, characterized by strong local flow, can result in formation of surface or submerged vortices, and with certain low values of submergence, may introduce air into pump, causing a reduction of capacity and efficiency, an increase in vibration and additional noise. Uneven flow distribution can also increase or decrease the power consumption with a change in total developed head. To avoid these sump problems pump station designers are considered intake structure dimensions, such as approaching upstream, baffle size, sump width, width of pump cell and so on. From this background, flow characteristics of intake within sump are Investigated numerically to obtain the optimal sump design data. The sump model is designed in accordance with HI code.

  • PDF

Assisted Flow Rate Characteristics in Hydraulic Power Steering System (유압식 파워 스티어링 시스템의 어시스트 유량 특성)

  • Lee, Byung-Rim;Ryu, Sang-Woock;You, Chung-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.58-63
    • /
    • 2009
  • Flow rate of the power steering oil pump is affected by oil temperature, engine rpm and pressure of pump. In this paper, considering those conditions, approximate model expressed by flow rate characteristics between hydraulic power steering oil pump and steering gear is proposed. Oil pump displacement is considered to be 9.6cc/rev. which is adapted to mid size car. Flow rate of the oil pump is predicted from the proposed model and compared with experimental data. And catch-up is also predicted in each steering wheel speed and is compared with experimental results.

An Experimental Study on Engine Cooling System Improvement (엔진 냉각 시스템 개선에 관한 실험적 연구)

  • Chon, M.S.;Hwang, Y.H.
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.77-82
    • /
    • 2004
  • This paper describes the improvement of engine cooling system. To improve engine cooling performance, the authors approached in two ways. One is to increase water pump performance, changing of impeller shape and lightening of material were carried out. The second one is cooling efficiency rise, which were investigated with head gasket coolant flow passage optimization with flow visualization technique. The test results show that water pump performance was increased effectively, reduction of pump drive torque, and increase of pump flow-rate and pressure rise. Gasket hole pattern optimization test results represent an optimized head coolant flow which stands cross flow from exhaust to intake port side and small vortex were removed.

  • PDF

Blade Shape Design of Mixed-flow Pump Impellers and Diffusers in a Fixed Meridional Geometry (자오면 고정 형상에서 사류펌프 임펠러 및 디퓨져 날개형상 설계)

  • Kim, Sung;Choi, Young-Seok;Lee, Kyoung-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1203-1208
    • /
    • 2009
  • In this paper, the flow characteristics of the mixed-flow pump impellers and diffusers were numerically predicted by commercial CFD software and DOE(design of experiments). We also discussed how to improve the performance of the mixed-flow pump by designing the impeller and diffuser in the mixed-flow pump. Geometric design variables were defined by the vane plane development which indicates the blade-angle distributions and length of the impeller and the diffusers. Firstly, the design optimization of the defined impeller geometric variables has been done. After that, the flow characteristics were analyzed in the point of incidence angle at the diffuser leading edge for the optimized impeller. Then design of the defined diffuser shape variables has been performed. The reason for the performance improvement was discussed by examining the flow characteristics through the diffuser.

  • PDF

An Experimental Study on the Estimation Flow-rate of Venturi Pump Using LightGBM (LightGBM을 이용한 수력 펌프 유량 추정의 실험적 연구)

  • Jin Beom Jeong;Jihwan Lee;Myeongcheol Kang
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.123-132
    • /
    • 2023
  • In disaster situations, to facilitate rapid drainage, electric underwater pumps are installed manually. This poses a high risk of electric shock accidents due to a short circuit, and a lot of time is required for hose connection and installation of electrical devices. To solve these problems, a Venturi pump using the venturi effect without external power is used. However, Venturi pumps that operate without external power make it difficult to install flow sensors such as electric devices; consequently, it is difficult to check the real-time flow rate. This paper proposes a flow estimation logic to replace the function of the flow sensor for the venturi pump . To develop the flow estimation logic, the flow characteristics of the venturi pump, according to the operating conditions, were checked. After that, the relationship with the flow rate of the venturi pump was defined using a pressure sensor corresponding to a low-cost sensor. Finally, an analysis of the estimation error was performed using the developed flow estimation logic.

An Investigation of the Pump Operating Characteristics as a Novel Control Index for LVAD Control

  • Choi Seongjin;Boston J. Robert;Antaki James F.
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.100-108
    • /
    • 2005
  • This work presents a novel control index to regulate the pump speed of an axial flow blood pump for the left ventricular assist device (LVAD). The control index is based on the characterization of pump operating conditions such as normal or suction status. The pump operating characteristics reveal that a certain pulsatility relationship between the pump pressure difference and the pump flow is a unique index to identify the pump operating status under the diverse pump operating environments.

Effect of Flow Control Valve Type on the Performance of DME High Pressure Fuel Pump (유량 제어 밸브 방식이 DME 고압 연료 펌프의 성능에 미치는 영향)

  • Sin, Yunsub;Lee, Geesoo;Kim, Hyunchul;Jeong, Soo-Jin;Park, Kyungyeong;Suh, Hyun Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.67-73
    • /
    • 2013
  • This experimental work described the effect of flow control valve type on the performance of wobble plate type fuel pump for the stable DME fuel supply. In order to study this, different four types of flow control valves (ITV, SCV, IMV and MPROP) were installed on the wobble plate fuel pump, and fuel flow rate, torque, and temperature variation of pump were investigated under various operating conditions by using pump performance test system. It was revealed that wobble plate type fuel pump worked well with ITV and SCV control valve, and the flow rate and torque of fuel pump was in proportion to the value of valve open duty. The maximum flow rate and torque of fuel pump were achieved around the 50% duty of control valve. Temperature variation at all pump measuring points were under $60^{\circ}C$ which is acceptable.

Study for the Increase of Micro Regenerative Pump Head

  • Horiguchi, Hironori;Wakiya, Keisuke;Tsujimoto, Yoshinobu;Sakagami, Masaaki;Tanaka, Shigeo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.189-196
    • /
    • 2009
  • The effect of inlet and outlet blade angles on a micro regenerative pump head was examined in experiments. The pump head was little increased by changing the blade angles compared with the original pump with the inlet and outlet blade angles of 0 degree. The effect of the axial clearance between the impeller and the casing on the pump head was also examined. The head was increased largely by decreasing the axial clearance. The computation of the internal flow was performed to clarify the cause of the increase of the pump head due to the decrease of the clearance. The local flow rate in the casing decreased as the leakage flow rate through the axial clearance decreased due to the decrease of the clearance. It was found that the larger head in the smaller clearance was just caused by the smaller local flow rate in the casing. In the case of the smaller clearance, the smaller local flow rate caused the smaller circumferential velocity near the front and rear sides of the impeller. This caused the increase of the angular momentum in the casing and the head.