• Title/Summary/Keyword: Flow pump

Search Result 1,787, Processing Time 0.025 seconds

Effects of the Lift Valve Opening Area on Water Hammer Pump Performance and Flow Behavior in the Valve Chamber

  • Saito, Sumio;Dejima, Keita;Takahashi, Masaaki;Hijikata, Gaku;Iwamura, Takuya
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.3
    • /
    • pp.109-116
    • /
    • 2012
  • Water hammer pumps can effectively use the water hammer phenomenon for water pumping. They are capable of providing an effective fluid transport method in regions without a well-developed social infrastructure. The results of experiments examining the effect of the geometric form of water hammer pumps by considering their major dimensions have been reported. However, these conventional studies have not fully evaluated pump performance in terms of pump head and flow rate, common measures of pump performance. The authors have focused on the effects on the pump performance of various geometric form factors in water hammer pumps. The previous study examined how the hydrodynamic characteristics was affected by the inner diameter ratio of the drive and lift pipes and the angle of the drive pipe, basic form factors of water hammer pumps. The previous papers also showed that the behavior of water hammer pump operation could be divided into four characteristic phases. The behavior of temporal changes in valve chamber and air chamber pressures according to the air volume in the air chamber located downstream of the lift valve was also clarified in connection with changes in water hammer pump performance. In addition, the effects on water hammer pump performance of the length of the spring attached to the drain valve and the drain pipe angle, form factors around the drain valve, were examined experimentally. This study focuses on the form of the lift valve, a major component of water hammer pumps, and examines the effects of the size of the lift valve opening area on water hammer pump performance. It also clarifies the behavior of flow in the valve chamber during water hammer pump operation.

Numerical Analysis on the Low Momentum Fluid Flow Characteristics in Centrifugal Pump Impeller (원심 펌프 회전차 내부의 저 운동량 유동특성에 관한 수치적 연구)

  • 김세진;김동원;김윤제
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.151-157
    • /
    • 1999
  • In this study, tile characteristics of three dimensional flow fields in centrifugal flump impeller are investigated by numerically. Detailed analysis and understanding of flow field in centrifugal pump are very important to predict performance of components. The three dimensional viscous fluid flow in centrifugal pump is distingushed isentropic process region from irreversible process region by wall shear effect, secondary flow, centrifugal and Coriolis forces, variation of boudary layers. Development of low momentum region by viscous fluid flow in the centrifugal impeller causes stall and blockage which is irreversible process region, and resulting in decrease of the performance and efficiency of centrifugal pump. Especially, the result is that Coriolis and centrifugal forces are most powerful factors which are increasing the irreversible region.

  • PDF

A Numerical Study of a Free Molecular Flow in the Turbomolecular Pump (터보 분자 펌프(Turbomolecular pump)내의 자유 분자 유동에 관한 수치 해석적 연구)

  • Hwang, Y.K.;Heo, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.219-229
    • /
    • 1996
  • In the free molecular flow range, the pumping performance of a turbomolecular pump has been predicted by calculation of the transmission probability employing the integral method and the test particle Monte-Carlo method. The velocities of molecules incident upon a moving blade are given by the random numbers, which are sampled from the Maxwell molecular velocity distribution function. The present results agree quantitatively with the previous known numerical results. For a multi-stage pump, the velocity profile of molecules between two blade rows is not Maxwell distribution. In this case, the Monte-Carlo method is employed to calculate the overall transmission probability for the entire set of blade rows. When the results of the approximate method combining the single stage solutions are compared with those of the Monte-Carlo method for the pump having six rows at C=0.6, the approximate method overestimates as much as 36% in the maximum compression ratio and 19% in the maximum pumping speed than does the Mote-Carlo method.

  • PDF

Development of a New Water Circulating System for Hot Water Mattress Without Water Pump (새로운 펌프 없는 온수매트용 온수 순환 시스템의 개발)

  • Je, Jong Joo;Sohn, Chang Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.1031-1036
    • /
    • 2013
  • The motor-driven water pump boiler for a water circulating mattress generates noise and vibration as it supplies a large water flow rate. A non-pump boiler can reduce such noise and vibration, however, the water circulation flow rate becomes lesser than that in motor-driven water pump boilers, and a large temperature deviation occurs between the inlet and the outlet of the mattress. In this research, a new non-pump boiler for water circulating mattress is developed and its performance is experimentally validated and compared with the existing non-pump boilers. The experimental results show that temperature response time is improved and temperature deviation is reduced.

Heating Performance Evaluation of the VRF Heat Pump System with Refrigerant Heating Cycle for the Extreme Cold Region (냉매 가열식 대용량 VRF 히트펌프 사이클 설계를 통한 극한랭지 난방 성능 평가)

  • Lee, Sang-Hun;Choi, Song;Kim, Byeng-Soon;Lee, Jae-Keun;Lee, Kang-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.571-579
    • /
    • 2011
  • Heat pump systems for commercial building with variable refrigerant flow(VRF) are expanding a market due to high energy efficiency, lower maintenance cost and easy installation comparing with the conventional heat pump with the constant refrigerant flow. In general, heat pump systems degrade the energy efficiency in the extremely low temperature regions. In this study, VRF heat pump system with refrigerant heating is experimentally investigated to overcome the low heating performance in the extremely low temperature regions. VRF heat pump system with refrigerant heating is found out the sufficient heating performance in the -25 degree temperature condition comparing with the conventional heat pump system and is obtained more than 2,500 kPa high pressure in the evaporator at low temperature.

Experimental Study on the Heating Performance Improvement of R134a Heat Pump System for Zero Emission Vehicles (무공해자동차용 R134a 히트펌프 시스템의 난방성능 향상에 관한 실험적 연구)

  • Lee, Dae-Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.6
    • /
    • pp.257-262
    • /
    • 2014
  • This paper describes an experimental study for heating performance that can be used in R-134a automobile heat pump systems. The heat pump system is widely studied for heating system in zero-emission vehicles to attain both the small power consumption and the effective heating of the cabin. This paper presents the experimental results of the influence on heating capacity and coefficient of performance of heat pump system. Tests were performed with different sizes of internal and external heat exchangers, and refrigerant flow rate was also considered in two-way flow devices. In addition, the heat, air, and water sources with the heat pump system were examined. The experimental results with the heat pump system were used to analyze the impact on performances. The best combination of performance was A-inside heat exchanger, B-outside heat exchanger, and B-flow device, respectively. In addition, a water heat-source was found to give roughly 40% of better performance than an air heat-source heat pump system.

Numerical analysis of the electromagnetic force for design optimization of a rectangular direct current electromagnetic pump

  • Lee, Geun Hyeong;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.869-876
    • /
    • 2018
  • The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed to optimize its geometrical and electrical parameters by numerical simulation. In a heavy-ion accelerator, which is being developed in Korea, a liquid lithium film is utilized for its high charge-stripping efficiency for heavy ions of uranium. A DC electromagnetic pump with a flow rate of $6cm^3/s$ and a developed pressure of 1.5 MPa at a temperature of $200^{\circ}C$ was required to circulate the liquid lithium to form liquid lithium films. The current and magnetic flux densities in the flow gap, where a $Sm_2Co_{17}$ permanent magnet was used to generate a magnetic field, were analyzed for the electromagnetic force distribution generated in the pump. The pressure developed by the Lorentz force on the electromagnetic force was calculated by considering the electromotive force and hydraulic pressure drop in the narrow flow channel. The opposite force at the end part due to the magnetic flux density in the opposite direction depended on the pump geometrical parameters such as the pump duct length and width that defines the rectangular channels in the nonhomogeneous distributions of the current and magnetic fields.

On Characteristics of Regulator System in Hydraulic Piston Pump (유압 피스톤 펌프 레귤레이터 시스템 특성 연구)

  • 여명구;김종기;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.266-272
    • /
    • 2000
  • The importance of variable displacement piston pump is recently increasing in industrial applications, as it is widely used for raising the energy level of the fluid in hydraulic system. The regulator is the device that controls the pump output flow depending on the machine load and engine speed, and that regulates the discharge flow of the piston pump by controlling the swivel angel. This work deals with constant power control of a regulator system in bent-axis type piston pump. In order to use engine power effectively, it is important to keep the horsepower from the engine to the pump constant. Therefore, optimum power usage is obtained by accurately following the power hyperbola. First, the governing equations of the regulator are derived, and analysis is performed by numerical simulation in which significant parameters of regulator are identified. Also, we designed and manufactured the prototype of the constant power control regulator for experiments. The experimental results show the responsibility and pressure-flowrate characteristics and these are compared with the theoretical analysis. As the result, it is confirmed that the characteristics of the designed regulator correspond to the numerical simulation.

  • PDF

Design of the Compound Smart Material Pump for Brake System of Small·Medium Size UAV (중소형 무인기 브레이크 시스템용 복합형 지능재료펌프 설계)

  • Lee, Jonghoon;Hwang, Jaihyuk;Yang, Jiyoun;Joo, Yonghwi;Bae, Jaesung;Kwon, Junyong
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • In this study, the design of compound smart materials hydraulic pump that can be applied to a small-medium size UAV having a limited space envelope and weight has been conducted. Compound Smart Material Pump(CSMP) proposed in this paper is composed of a pressurize pump and a flow pump for supplying the high pressure and fluid displacement to overcome the disadvantages of the piezoelectric actuator which has a small strain. Though this compound smart material pump has been designed as small size and lightweight as possible, it can sequentially supply the sufficient large flow rate and pressure required for the brake operation. For the design of CSMP, about 2,700 kg (6,000 lb) class fixed wing manned aircraft was selected. Based on the established requirements, the design of the CSMP have been done by strength, vibration, and fluid flow analysis.

An Interal Flow Analysis of Turbo Pump Inducer (터보펌프 인듀서의 내부 유동 해석)

  • Shim, Chang-Yeul;Kang, Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.631-636
    • /
    • 2001
  • The internal flow in the rocket pump inducer of LE-7 engine for H-II rocket was predicted at design and off-design flow rates using CFD code, CFX- Tascflow. In this numerical study, the performance curve of inducer coressponding to flow rates variation and the internal flow in the front of blade leading edge show good agreement between the calculations and the measurements. Backflow is appeared at suction side of leadinge edge tip, and this region is extended to upstream as flowrate decrease. Because of backflow, pressure loss coressponding to meridinal coordinate occupy 50% from inlet domain to leading edge. By this phenomena, pressure loss in front of blade leading edge take a great effect to inducer performance.

  • PDF