• Title/Summary/Keyword: Flow production

Search Result 2,083, Processing Time 0.028 seconds

A Study on Optimized Layout Design of FAS Line Through Production Flow Analysis (생산 흐름 분석을 통한 FAS라인의 최적 배치 설계에 관한 연구)

  • Ga Chun Sik;Jang Bong-Choon;Eom Yong-Gyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.38-44
    • /
    • 2005
  • Many mid-sized companies in Korean automotive industry have attempted to solve the lack of human power, to control the quality of components, to improve the production rate, and to innovate the manufacturing line. The goals of this study are to analyze the production rate of an automotive component manufacturing line using simulation software, to construct a Flexible Automation Subassembly (FAS) system and to suggest an optimized layout design using FAS line. In this research, the simulation model for manufacturing line was developed and used the realistic data of a medium sized company in Korean automotive industry. To complete this research, a simulation software 'ARENA' was used. This research analyzed the work distribution strategy and cycle time element for production flow and proposed an optimized layout to resolve line balancing problem which would bring the improved production rate.

Effects of Culture Type and Inoculation Quantity in Bioreactor on Production of Potato Plantlets

  • Choi Ki Young;Son Sung Ho;Lee Joo Hyun;Lee Yong-Beom;Bae Jong Hyang
    • Journal of Bio-Environment Control
    • /
    • v.14 no.4
    • /
    • pp.298-301
    • /
    • 2005
  • Potato (Solamum tuberosum 'Dejima') plantlets were investigated on culture type and initial quantity of inoculation in bioreactor and survival rate by hydroponics for mass production. rode stems (1 to 1.5cm in length) of potato plantlets multiplied in vitro were grown for 3 weeks in liquid Murashige and Skoog (MS) medium with sucrose $30 g\; L^{-1}$. When plantlets (80-node inoculation) were raised in 10L balloon type bubble (BB) bioreactor, the healthiest growth of plantlets was obtained from explants cultured in ebb & flow culture with medium supplied periodically 12 times per day. The suitable inoculation quantity of 20L BB bioreactor was 120 pieces of stem segments (mean 2.2g fresh weight) in ebb & flow culture. Number of nodal shoot was eight on the average. In controlled culture room, survival rate of plantlets at 7 days after stem cutting was above $70\%$ when they were acclimatized by hydroponics grown in deep flow and solid medium culture. The highest survival rate of the stem cutting plantlets was in nutrient solution adjusted to EC $1.4dS{\cdot}m^{-1}$. Stem cutting plantlets through one culture could be obtained $670\~900$, when plantlets were grown in ebb & flow culture during 3 weeks using a 20L bioreactor with initial 120 pieces of nodal segments. 11 is possible In do mass production of seedlings cultured in bioreactor and hydroponics.

Bottleneck Detection Based on Duration of Active Periods (생산 활동기간 기반 애로공정의 발견)

  • Kwon, Chi-Myung;Lim, Sanggyu
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.3
    • /
    • pp.35-41
    • /
    • 2013
  • This paper applies an active period based bottleneck detection method to flow shop manufacturing system with limited buffer size. Manufacturing systems are constrained by one or more bottlenecks which degrades the system throughput. Conventional bottleneck detection methods include the waiting time or queue length of production stations and their utilization. Due to the random events such as production time of items, machine failure and repair times, the systems may change over time, and subsequently bottlenecks shift from one station to another station. Active period of working station may cause other stations to wait for productions. Information when and where active periods occur helps to find bottlenecks in production systems. Based on these informations, we predict bottlenecks in applying AweSim simulation language. We compare the simulation results of conventional methods with those obtained from duration of active period method, and duration ratio method of both sole and shift bottleneck periods. Even though simulation results are from simple flow shop model, they are quite promising for predicting bottlenecks of production stations. We hope this study aids in decision making regarding the improving system production yield and allocation of available resources of system.

Water Model Experiments of the Mixing Behavior of Polypropylene Particles by Vortex Stirrer (와류식 교반기를 이용한 폴리프로필렌 입자의 혼합 거동에 대한 수모델 연구)

  • Jung, Jaeyong;Lee, Joonho;Lee, Hyoungchul;Ki, Joonseong;Hwang, Jinill
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.122-128
    • /
    • 2012
  • Water model experiments were carried out to understand the mixing behavior of reducing agents in molten slag through vortex stirrer, which makes use of a gravitational energy to mix reducing agent in the molten slag without imparting artificial energy. At a water flow rate of 6 L/min vortex was not generated, and a stable vortex was formed when the water flow rate was 7 L/min or higher with the present experimental apparatus. Water level increased linearly with increasing the water flow rate. In the upper vortex region, the vertical and horizontal velocities slightly decreased with increasing the water flow rate, whereas those in the lower vortex region increased remarkably. Accordingly, strong mixing behavior was obtained in the lower vortex region. Owing to the strong centrifugal force, particles move downwards with approaching the funnel wall. When 40 grams of polypropylene particles added to the lower vortex, they were instantaneously mixed well.

Effect of Aeration and Agitation Conditions on the Production of Glucoamylase with Aspergillus niger No. PFST-38

  • Oh, Sung-Hoon;O, Pyong-Su;Lee, Cherl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.4
    • /
    • pp.292-297
    • /
    • 1993
  • Aspergillus niger No. PFST-38 was grown on complex media in 30L agitated fermentors at various aeration rates and stirrer speeds. We could correlate the mixing time as a function of the Reynolds number and the apparent viscosity, as follows. ${\theta}_M=2.95\;\NRe^{-0.52},\;{\theta}_M=1.88\;{\eta_a}^{0.57}$ Also, the effects of the apparent viscosity (${\theta}_a$), the impeller rotational speed (N), the air flow rate ($V_s$), and the mixing time (${\theta}_M$) on the oxygen transfer coefficient, $K_L a$ were determined experimentally, and equated as follows. $K_La=12.04N^{0.88}Vs^{0.71}{n_a}^{-0.83},\;K_La=30.2N^{0.88}Vs^{0.71}{\theta_M}^{-1.45}$ $K_La$ increased as the agitation speed and the air flow rate increased. The rate of $K_La$ increase was dependent more on the rotational speed of impeller than on the air flow rate. The glucoamylase production increased with the increase of the agitation speed upto at 500 rpm and increased with the increase of air flow rate upto at 1.0 vvm. The values calculated from the above equation confirmed that the experimental maximum production of glucoamylase was achieved when the $K_La$ and the apparent viscosity of the broth were $260\;hr^{-1}$ and 1800 cps, respectively.

  • PDF

Effects of Secondary Flow on the Turbulence Structure of a Flat Plate Wake (2차유동이 평판후류의 난류구조에 미치는 영향)

  • Kim, Hyeong Soo;Lee, Joon Sik;Kang, Shin Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1073-1084
    • /
    • 1999
  • The effects of secondary flow on the structure of a turbulent wake generated by a flat plate was investigated experimentally. The secondary flow was induced In a $90^{\circ}$ curved duct in which the flat plate wake generator was installed. The wake generator was installed in such a way that the wake velocity gradient exists in the span wise direction of the curved duct. Measurements were made in the plane containing the mean radius of curvature where pressure gradient and curvature effects were small compared with the secondary flow effect. All six components of the Reynolds stresses were measured in the curved duct. Turbulence intensities in the curved wake are higher than those in the straight wake due to an increase of the turbulent kinetic energy production by the secondary flow. In the inner wake region, shear stress and strain in the plane containing the velocity gradient of the wake show opposite signs with respect to each other, so that eddy viscosity Is negative in this region. This indicates that gradient-diffusion type turbulence models are not appropriate to simulate this type of flow.

Effects of the secondary flow on the turbulent heat transfer of a flat plate wake (2차유동이 평판후류의 난류열전달에 미치는 영향)

  • Kim, Hyeong-Su;Lee, Jun-Sik;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.417-427
    • /
    • 1998
  • The effect of secondary flow on the heat transfer of a turbulent wake generated by a flat plate was experimentally investigated. The secondary flow was induced in a curved duct in which the flat plate wake generator was installed. All three components of turbulent heat flux were measured in the plane containing the mean radius of curvature of the curved duct. The results showed that mean temperature profiles deviate from the similarity of the straight wake because of the cold fluid transported from the free-stream. The half-width of the mean temperature profile increased rapidly by upwash motion of the secondary flow. The changes to turbulence structure caused by the secondary flow show more pronounced effect on heat transport than on momentum transport. This is because the response to the variation of flow conditions is delayed in temperature field. Negative production of the turbulent heat flux is observed in the inner wake region. From the conditional averaging, it has been found that the negative production of the turbulent heat flux is generated due to a mixing process between the hot and low momentum eddies occupied in the inner wake region and the cold and high momentum eddies in the potential region.

A Two-Stage Scheduling Approach on Hybrid Flow Shop with Dedicated Machine (전용기계가 있는 혼합흐름공정의 생산 일정 계획 수립을 위한 2단계 접근법)

  • Kim, Sang-Rae;Kang, Jun-Gyu
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.4
    • /
    • pp.823-835
    • /
    • 2019
  • Purpose: This study deals with a production planning and scheduling problem to minimize the total weighted tardiness on hybrid flow shop with sets of non-identical parallel machines on stages, where parallel machines in the set are dedicated to perform specific subsets of jobs and sequence-dependent setup times are also considered. Methods: A two-stage approach, that applies MILP model in the 1st stage and dispatching rules in the 2nd stage, is proposed in this paper. The MILP model is used to assign jobs to a specific machine in order to equalize the workload of the machines at each stage, while new dispatching rules are proposed and applied to sequence jobs in the queue at each stage. Results: The proposed two-stage approach was implemented by using a commercial MILP solver and a commercial simulation software and a case study was developed based on the spark plug manufacturing process, which is an automotive component, and verified using the company's actual production history. The computational experiment shows that it can reduce the tardiness when used in conjunction with the dispatching rule. Conclusion: This proposed two-stage approach can be used for HFS systems with dedicated machines, which can be evaluated in terms of tardiness and makespan. The method is expected to be used for the aggregated production planning or shop floor-level production scheduling.

A Study on the Performance Prediction for Small Hydro Power Plants (소수력발전소의 성능예측)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.448-451
    • /
    • 2005
  • This paper presents the methodology to analyze flow duration characteristics and performance prediction for small hydro power(SHP) plants and its application. The flow duration curvecan be decided by using monthly rainfall data at the most of the SHP sites with no useful hydrological data. It was proved that the monthly rainfall data can be characterized by using the cumulative density function of Weibull distribution and Thiessen method were adopted to decide flow duration curve at SHP plants. And, the performance prediction has been studied and development. One SHP plant was selected and performance characteristics was analyzed by using the developed technique. Primary design specfications such as design flowrate, plant capacity, operational rate and annual electricity production for the SHP plant were estimated. It was found that the methodology developed in this study can be a useful tool to predict the performance of SHP plants and candidate sites in Korea.

  • PDF

A Study on the SCM Process in e-Trade (e-Trade의 SCM Process에 관한 연구)

  • 김명호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.918-925
    • /
    • 2004
  • SCM means that production companies set up schedules for the purchase, manufacture and sales of production parts, go on smoothly the flow of products (added value and material flow) by systematically arranging the demand plans of customers and the distribution situation, thereby executing the management of them in an effective way. This article aims at analyzing the external flow between government and companies and presenting the problems and the improvement plans, which can make clear all the information flow of supply networks including the internal integration.