• Title/Summary/Keyword: Flow plate

Search Result 1,908, Processing Time 0.03 seconds

Characteristic analysis of flowfield around a square prism having a detached splitter plate using the PIV (PIV에 의한 분리된 분할판을 가진 정방형주 주위의 유동장 특성 분석)

  • Ro, Ki-Deok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.338-343
    • /
    • 2013
  • The Flowfield characteristics of a square prism having a detached splitter plate at the wake region were investigated by visualization of the flow field using PIV. The experimental parameters were the width ratios(H/B=0.5~1.5) of the splitter plate to the prism width and the gap ratios (G/B=0~2) between the prism and the splitter plate. As the results the Strouhal number measured at the wake region of the detached splitter plate was decreased with the width ratio and the gap ratio. The clockwise vortex at the upside of the splitter plate and counterclockwise vortex at the downside were represented, the size of these vortices were increased with the width of the splitter plate. The reverse flow was represented at the wake region of the square prism having a detached splitter plate, the size of this reverse flow was increased with the width of the splitter plate.

On the particularities of the forced vibration of the hydro-elastic system consisting of a moving elastic plate, compressible viscous fluid and rigid wall

  • Akbarov, Surkay D.;Panakhli, Panakh G.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.287-316
    • /
    • 2017
  • This paper studies the particularities of the forced vibration of the hydro-elastic system consisting of a moving elastic plate, compressible viscous fluid and rigid wall. This study is made by employing the discrete-analytical solution method proposed in the paper by the authors (Akbarov and Panakhli (2015)). It is assumed that in the initial state the fluid flow is caused by the axial movement of the plate and the additional lineally-located time-harmonic forces act on the plate and these forces cause additional flow field in the fluid and a stress-strain state in the plate. The stress-strain state in the plate is described by utilizing the exact equations and relations of the linear elastodynamics. However, the additional fluid flow field is described with linearized Navier-Stokes equations for a compressible viscous fluid. Numerical results related to the influence of the problem parameters on the frequency response of the normal stress acting on the plate fluid interface plane and fluid flow velocity on this plane are presented and discussed. In this discussion, attention is focused on the influence of the initial plate axial moving velocity on these responses. At the same, it is established that as a result of the plate moving a resonance type of phenomenon can take place under forced vibration of the system. Moreover, numerical results regarding the influence of the fluid compressibility on these responses are also presented and discussed.

An Experimental Study of the Supersonic, Dual, Coaxial Jets Impinging on a Flat Plate (평판에 충돌하는 초음속 이중 동축제트에 관한 실험적 연구)

  • Kim Jung-Bae;Lee Jun-Hee;Kim Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.739-742
    • /
    • 2002
  • The supersonic, dual, coaxial jet impinging upon a vertical flat plate has recently been applied to a variety of industrial manufacturing processes, since it has several advantages over a conventional supersonic impinging jet. In the present study, experimentation is carried out to investigate the effects of the impinging angle of the annular flow and the design Mach number on the flow field formed over the vertical flat plate. A convergent-divergent nozzle is used to obtain the inner jet flow, its design Mach number being changed between $1.0\;and\;2.0$. The outer annular nozzle has a constant area of the Mach number of 1.0, and its impinging angle of $0^{\circ}\;and\;20^{\circ}$. The primary jet pressure ratio is changed in the range from 6.0 to 10.0 and for the annular flow, the assistant jet pressure ratio is changed from 1.0 to 4.0. The distance between the dual, coaxial nozzle and flat plate is also changed. Detailed pressure measurements are conducted along the axis of the jet and on the flat plate as well. The impinging coaxial Jet flows are visualized using the Schlieren and Shadow optical methods. The results show that the flow field on the plate is not strongly dependent only on the primary and assistant pressure ratios but also the impinging angle of the annular nozzle.

  • PDF

Analysis of Rarefied Flow Field Around a Flat Plate by the DSMC Method (DSMC 방법을 이용한 평판 주위의 희박류 해석)

  • Yoon Sung Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.235-240
    • /
    • 1995
  • The paper describes hypersonic rarefied flow of helium and nitrogen over a flat plate by the direct simulation Monte Carlo (DSMC) method. The effect of incomplete accommodation and plate thickness are analyzed and the computational results are compared with wind tunnel test data. Also computational aspects of the method are outlined.

  • PDF

A NUMERICAL STUDY ON THE CHARACTERISTIC OF FLOW DISTRIBUTION IN THE CHANNEL OF PLATE HEAT EXCHANGER FOR VARIOUS NUMBER OF CHANNELS (판형 열교환기의 전열판 개수에 따른 유량 분배 특성에 대한 수치해석)

  • Lee, Na-Ri;Jung, Jae-Hyuk;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.129-134
    • /
    • 2009
  • In the present study, the characteristic of flow distribution in the channel of a plate heat exchanger is investigated numerically. In order to accomplish the efficient and fast analyses of the flow characteristics in the channel, a semi-microscopic analysis has been performed using a porous media model. For semi-microscopic analysis using porous media, the flow resistance coefficients are obtained through the result of pressure drop in the experimental data. The results showed that the variation of mass flow rate, geometry and chevron angle strongly depend on the flow distribution in the channel. Particularly, the chevron angle is most important factor for uniform flow distribution.

  • PDF

An Experimental Study on Flow Characteristics of Impinging Jet (1) (충돌제트의 유동특성에 관한 실험적 연구(1))

  • 김동균;김정환;배석태;김시범;이영호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.37-42
    • /
    • 2000
  • The flow characteristics of impinging jet flow are affected greatly by nozzle plate to distances. An sharp edge nozzle was used to achieve uniform mean velocity at the nozzle inlet, and its diameter is 10mm(d). Therefore, the flow characteristics on the impinging jet plate can be changed largely by the control of main flow. In the parent study, we investigate the effects of main flow length , its variable is nozle plate to distances( 12d, 10d, 8d, 6d and 4d).

  • PDF

The Study on Changes of Mixing Layer Caused by Acoustic Excitation (음향 여기에 의한 혼합층 유동구조의 변화에 대한 연구)

  • 정양범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.120-127
    • /
    • 2000
  • This study is concerned with evaluating the effects of acoustic excitation on the development of two stream mixing layer generated by split plate. The ratios of two velocities U1 and U2 either side of the splitter plate were such that $U_1/U_2$=1.0 (uniform flow) or $U_1/U_2$<1.0(shear flow). The mixing layers were disturbed acoustically through the edge of split plate. Quantitative data were obtained with hot-wire anemometry. Flow visualization with smoke-wire was also employed for qualitative study. the results show that the large scale structures of mixing layers are strongly affected by excitation frequency and amplitude in both uniform and shear flows. The maximum streamwise and vertical turbulent intensities of the excited flow fields are apt to be decreased as compared with those of without excitation. The flow characteristics of uniform flow are more influenced by acoustic excitation than those of shear flow.

  • PDF

Investigation on the Turbulent Flow Characteristics of a Gun-Type Gas Burner with the Different Shape of Baffle Plate (배플판 형상이 다른 Gun식 가스버너의 난류유동 특성치 고찰)

  • Kim, Jang-Kweon;Jeong, Kyu-Jo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.475-485
    • /
    • 2004
  • This paper was studied to investigate and compare the effects of inclined baffle plate on the turbulent flow characteristics of a gun-type gas burner through X-Y plane and Y-Z plane respectively by using X-probe from hot-wire anemometer system. For this purpose, two burner models with a cone-type baffle plate and a flat-type one respectively were used. The fast jet flow spurted from slits plays a role such as an air-curtain because it encircles rotational flow by swirl vanes and drives mixed main flow to axial direction regardless of the inclination of baffle plate. The inclined baffle plate causes axial mean velocity component and turbulent intensities etc. to be greatly concentrated towards the central part of a burner, and its effect especially appears in the range of about X/R=1.0-2.0. Also, it gives much larger size to axial mean velocity component and turbulent intensities etc formed near the slits in the range of X/R=1.4103. Especially the inclined baffle plate shifts more the Reynolds shear stress uw to the central region of a burner(Y/R=${\pm}$0.75) than the flat-type one, moreover it develops more strongly than uv.

Development of Carbon Composite Bipolar Plates for Vanadium Redox Flow Batteries

  • Lee, Nam Jin;Lee, Seung-Wook;Kim, Ki Jae;Kim, Jae-Hun;Park, Min-Sik;Jeong, Goojin;Kim, Young-Jun;Byun, Dongjin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3589-3592
    • /
    • 2012
  • Carbon composite bipolar plates with various carbon black contents were prepared by a compression molding method. The electrical conductivity and electrochemical stability of the bipolar plates have been evaluated. It is found that the electrical conductivity increases with increasing carbon black contents up to 15 wt %. When the carbon black contents are greater than 15 wt %, the electrical conductivity decreases because of a poor compatibility between epoxy resin and carbon black, and a weakening of compaction in the carbon composite bipolar plate. Based on the results, it could be concluded that there are optimum carbon black contents when preparing the carbon composite bipolar plate. Corrosion tests show that the carbon composite bipolar plate with 15 wt % carbon black exhibits better electrochemical stability than a graphite bipolar plate under a highly acidic condition. When the optimized carbon composite bipolar plate is applied to vanadium redox flow cells, the performance of flow cells with the carbon composite bipolar plate is comparable to that of flow cells with the graphite bipolar plate.

Comparison of Heat Transfer Theory, CFD and Experimental Results in the Design Process of High-Power Fiber Laser Cooling Plate (고출력 광섬유 레이저 냉각판 설계과정에서 나타난 열전달 이론, CFD 및 실험 결과값의 비교)

  • Kim, Taewoo;Lee, Kangin;Jeong, Minwan;Jeong, Yeji;Koh, KwangUoong;Lee, Yongsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.629-637
    • /
    • 2021
  • For the stabilization of laser output power and wavelength of the high power fiber laser, the cooling plate must be properly taken into account. In this study, three analyzing methods which are heat transfer theory, CFD and experiment are used to analyze cooling plate performance by measuring pump Laser Diode(LD) temperature. Under limited operating conditions of a cooling plate, the internal flow of cooling plate is transitional flow so that the internal flow is assumed to be laminar and turbulence flow and conducted theoretical calculation. Through CFD, temperature of pump LD and characteristics of the internal flow were analyzed. By the experiment, temperature of pump LD was measured in real conditions and the performance of the cooling plate was verified. The results of this study indicate that three analyzing methods are practically useful to design the cooling plate for the high power fiber laser or similar things.