• Title/Summary/Keyword: Flow noise

Search Result 1,721, Processing Time 0.029 seconds

Aero-acoustic Performance Pprediction Method and Parametric Studies of Axial Flow Fan (축류 홴의 공력-음향학적 성능 예측방법 및 매개변수 연구)

  • Lee, Chan
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.661-669
    • /
    • 1996
  • Proposed is an aero-acoustic performance prediction method of axial fan. The fan aerodynamic performance is predicted by combining pitch-averaged quasi 3-D flow analysis with pressure loss models for blade boundary layer and wake, secondary flow, endwall boundary layer and tip leakage flows. Fan noise is assumed to be radiated as dipole distribution type, and its generation is assumed to be mainly due to the vortex street shed from blade trailing edge. The fluctuating pressure and lift on the blade surface are analyzed by incorporating the wake vortex stree shed from blade trailing edge. The fluctuating pressure and lift on the blade surface are analyzed by incorporating the wake vortex street model with thin airfoil theory. The aero-acoustic performance prediction results by the present method are in good agreement with the measured results of several axial fans. With the present prediction method, parametric studies are carried out to investigate the effects of blade chord length and spacing on the efficiency and the noise level of fan. In the case of lightly loaded fan, both efficiency improvement and noise reduction can be achieved by decreasing chord length or by increasing blade specing. However, when fan is designed at highly loaded condition, the noise reduction by increasing blade spacing penalizes the attaninable efficiency of fan.

  • PDF

Development of high performance and low noise axial-flow fan for cooling machine room of refrigerator using airfoil-cascade analysis and surface ridge shape (익렬 분석 및 표면 돌기 형상을 이용한 냉장고 기계실 냉각용 고성능/저소음 축류팬 개발)

  • Choi, Jinho;Ryu, Seo-Yoon;Cheong, Cheolung;Kim, Tae-hoon;Koo, Junhyo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.515-523
    • /
    • 2020
  • This study aims to improve the flow and noise performances of an axial-flow fan for cooling the machine room in a refrigerator by using airfoil-cascade analysis and surface ridge shape. First, the experimental evaluations using a fan performance tester and an anechoic chamber are performed to analyze the flow and noise performances of the existing fan system. Then, the corresponding flow and noise performances are numerically assessed using the Computational Fluid Dynamics (CFD) techniques and the Ffowcs-Williams and Hawkings (FW-H) equation, and the validity of numerical results are confirmed through their comparisons with the experimental results. The analysis for the flow of a cascade of airfoils constructed from the existing fan blades is performed, and the pitch angles for the maximum lift-to-drag ratio are determined. The improved flow performance of the new fan applied with the optimum pitch angles is confirmed. Then, the fan blades with surface ridges on their pressure sides are devised, and the reduction of aerodynamic noise of the ridged fan is numerically confirmed. Finally, the prototype of the final fan model is manufactured, and improvements in the flow and noise performances of the prototype are experimentally confirmed.

Characteristics of Two-Phase Flow in Vertical Pipe (수직관에서의 이상유동 특성)

  • Bae, B.M.;Sim, W.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.879-882
    • /
    • 2004
  • Two-phase flow exists in many industrial components. Characteristics of two-phase flow have been studied by many researchers; however, a further study of the two-phase is required for flow-induced vibration. Characteristics of two-phase flow were measured by force sensor at the end of a vertical pipe. The predominant frequency of fluctuation was obtained for various speeds of flow pattern. A correlation to slug frequency for horizontal flow was obtained by Heywood & Richardson (1979), while Legius et al (1997) for vertical flow. A coefficient based on the correlation is estimated and then compared to the existing ones. The existing empirical formulations for average void fraction were proposed by Wallis (1969), Zuber et al (1967) and Ishii (1970). In the present result, flow parameters, such as flow quality and real velocity, are evaluated with void fraction.

  • PDF

A Study on the Noise Reduction Technology for Air-Compressor (공기압축기 소음 저감 기술에 관한 연구)

  • Kim, Bong-Gi;Kim, Jae-Seung;Kim, Hyeon-Sil;Gang, Hyeon-Ju;Kim, Sang-Ryeol
    • 연구논문집
    • /
    • s.33
    • /
    • pp.39-51
    • /
    • 2003
  • This paper deals with the noise measurement and evaluation method of a reciprocating air-compressor and its noise reduction. Lead-wrapping techniques are employed to identify the contribution of principal noise sources which are generally known as motor, belts, suction/discharge valves, moving piston, and flow-induced noise which are caused by edges or discontinuities along the flow path e.g. expansions, contractions, junctions and bends. As a result, it can be found that main noise sources of the air-compressor can be categorized by the suction/discharge noise, valve noise, and compressed-air tank noise. Based on the investigations, mufflers are designed to reduce both the suction/discharge noise and the compressed-air tank noise. Instead of the conventional valve plate, engineering plastics are used as a new one for the reduction of valve impact noise. In addition, attempts are made to reduce the valve noise propagation to the cylinder head and the compressor tank by using the insulation casings in the cylinder head. As a result of the countermeasure plans, it can be achieved that the noise reduction of the air-compress is up to 10 dB.

  • PDF

Broadband Noise Prediction of the Ice-maker Centrifugal Fan in a Refrigerator Using Hybrid CAA Method and FRPM Technique (복합 CAA 방법과 FRPM 기법을 이용한 냉장고 얼음제조용 원심팬의 광대역 소음 예측)

  • Heo, Seung;Kim, Dae-Hwan;Cheong, Cheol-Ung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.391-398
    • /
    • 2012
  • In this paper, prediction of centrifugal fan was conducted through combination the hybrid CAA method which was used to predict the fan noise with the FRPM technique which was used to generate the broadband noise source. Firstly, flow field surround the centrifugal fan was computed using the RANS equations and noise source region was deducted from the computed flow field. Then the FRPM technique was applied to the source region for generation of turbulence which satisfies the stochastic features. The noise source of the centrifugal fan was modeled by applying the acoustic analogy to the synthesized flow field from the computed and generated flow fields. Finally, the broadband noise of the centrifugal fan was predicted through combination the modeled noise source with the linear propagation which was realized using the boundary element method. It was confirmed that the proposed technique is efficient to predict the tonal and broadband noises of centrifugal fan through comparison with the measured data.

유압펌프에서 발생되는 고주파 유량맥동의 고응답 계측

  • 이상기;김도태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.267-272
    • /
    • 1995
  • The paper describes an approach for measuring flow ripple generated by oil hydraulic axial piston pumps. Flow ripple has periodic waveforms due to the cyclic nature of a pump's operation, and interacts with the connected hydraulic systems such as pipes and components to produce a pressure ripple, also known as fluid-borne noise. It is indispensable to measure a flow ripple because increasing of vibration and noise caused by a flow ripple has become a point to be considered and has need of solving these problems. The measurement of flow ripple with high frequencies from oil hydraulic axial piston pumps is msde by using the remote instantaneous flow rate measurement method. As a result, the reverse flow through the relief groove in valve plate has an important effect upon a flow ripple generated by a pumps.

  • PDF

Effect of noise barrier on aerodynamic performance of high-speed train in crosswind

  • Zhao, Hai;Zhai, Wanming;Chen, Zaigang
    • Wind and Structures
    • /
    • v.20 no.4
    • /
    • pp.509-525
    • /
    • 2015
  • A three-dimensional aerodynamic model and a vehicle dynamics model are established to investigate the effect of noise barrier on the dynamic performance of a high-speed train running on an embankment in crosswind in this paper. Based on the developed model, flow structures around the train with and without noise barrier are compared. Effect of the noise barrier height on the train dynamic performance is studied. Then, comparisons between the dynamic performance indexes of the train running on the windward track and on the leeward track are made. The calculated results show that the noise barrier has significant effects on the structure of the flow field around the train in crosswind and thus on the dynamic performance of the high-speed train. The dynamic performance of the train on the windward track is better than that on the leeward track. In addition, various heights of the noise barrier will have different effects on the train dynamic performance. The dynamic performance indexes keep decreasing with the increase of the noise barrier height before the height reaches a certain value, while these indexes have an inverse trend when the height is above this value. These results suggest that optimization on the noise barrier height is possible and demonstrate that the designed noise barrier height of the existing China Railway High-speed line analysed in this article is reasonable from the view point of the flow field structure and train dynamic performance although the noise barrier is always designed based on the noise-related standard.

Prediction of time-series underwater noise data using long short term memory model (Long short term memory 모델을 이용한 시계열 수중 소음 데이터 예측)

  • Hyesun Lee;Wooyoung Hong;Kookhyun Kim;Keunhwa Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.313-319
    • /
    • 2023
  • In this paper, a time series machine learning model, Long Short Term Memory (LSTM), is applied into the bubble flow noise data and the underwater projectile launch noise data to predict missing values of time-series underwater noise data. The former is mixed with bubble noise, flow noise, and fluid-induced interaction noise measured in a pipe and can be classified into three types. The latter is the noise generated when an underwater projectile is ejected from a launch tube and has a characteristic of instantaenous noise. For such types of noise, a data-driven model can be more useful than an analytical model. We constructed an LSTM model with given data and evaluated the model's performance based on the number of hidden units, the number of input sequences, and the decimation factor of signal. It is shown that the optimal LSTM model works well for new data of the same type.

A Prediction of Airflow-Induced Noise in DVD Drive using Acoustic Analogy (음향상사이론을 이용한 DVD Drive 내에서의 유동소음 예측)

  • Yoo, Seung-Won;Lee, Jong-Soo;Min, Oak-Key
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.502-507
    • /
    • 2000
  • This paper presents the numerical prediction of airflow-induced sound in DVD drives. Computational fluid dynamics (CFD) is first conducted to evaluate flow field characteristics due to the high-speed disk rotation, and to support the acoustic analysis. The acoustic analogy based on Ffowcs Williams-Hawkings (FW-H) equation is adopted to predict aeroacoustic noise patterns. The integral solution for quadrupole volume source is included to identify the turbulence noise generated inside the DVD tray. Near-field noise is strongly affected by the flow field characteristic, which is caused by the complex shape of the tray. For a mid-field, the quadrupole noise play as a counterpart of thickness noise or loading noise, resulting in a different pattern compared with those in the near field.

  • PDF