• 제목/요약/키워드: Flow network model

검색결과 773건 처리시간 0.026초

일반화된 네트워크에서 최단흐름생성경로문제 (The Shortest Flow-generating Path Problem in the Generalized Network)

  • 정성진;정의석
    • 대한산업공학회지
    • /
    • 제23권3호
    • /
    • pp.487-500
    • /
    • 1997
  • In this paper, we introduce the shortest flow-generating path problem in the generalized network. As the simplest generalized network model, this problem captures many of the most salient core ingredients of the generalized network flows and so it provides both a benchmark and a point of departure for studying more complex generalized network models. We show that the generalized label-correcting algorithm for the shortest flow-generating path problem has O(mn) time complexity if it starts with a good point and also propose an O($n^3m^2$) algorithm for finding a good starting point. Hence, the shortest flow-generating path problem is solved in O($n^3m^2$) time.

  • PDF

세포-시스템 차원의 혈류역학적 심혈관 시스템 모델의 개발 (Development of an integrative cardiovascular system model including cell-system and arterial network)

  • 심은보;전형민
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.542-546
    • /
    • 2008
  • In this study, we developed a whole cardiovascular system model combined with a Laplace heart based on the numerical cardiac cell model and a detailed arterial network structure. The present model incorporates the Laplace heart model and pulmonary model using the lumped parameter model with the distributed arterial system model. The Laplace heart plays a role of the pump consisted of the atrium and ventricle. We applied a cellular contraction model modulated by calcium concentration and action potential in the single cell. The numerical arterial model is based upon a numerical solution of the one-dimensional momentum equations and continuity equation of flow and vessel wall motion in a geometrically accurate branching network of the arterial system including energy losses at bifurcations. For validation of the present method, the computed pressure waves are compared with the existing experimental observations. Using the cell-system-arterial network combined model, the pathophysiological events from cells to arterial network are delineated.

  • PDF

A System Engineering Approach to Predict the Critical Heat Flux Using Artificial Neural Network (ANN)

  • Wazif, Muhammad;Diab, Aya
    • 시스템엔지니어링학술지
    • /
    • 제16권2호
    • /
    • pp.38-46
    • /
    • 2020
  • The accurate measurement of critical heat flux (CHF) in flow boiling is important for the safety requirement of the nuclear power plant to prevent sharp degradation of the convective heat transfer between the surface of the fuel rod cladding and the reactor coolant. In this paper, a System Engineering approach is used to develop a model that predicts the CHF using machine learning. The model is built using artificial neural network (ANN). The model is then trained, tested and validated using pre-existing database for different flow conditions. The Talos library is used to tune the model by optimizing the hyper parameters and selecting the best network architecture. Once developed, the ANN model can predict the CHF based solely on a set of input parameters (pressure, mass flux, quality and hydraulic diameter) without resorting to any physics-based model. It is intended to use the developed model to predict the DNBR under a large break loss of coolant accident (LBLOCA) in APR1400. The System Engineering approach proved very helpful in facilitating the planning and management of the current work both efficiently and effectively.

A Network Capacity Model for Multimodal Freight Transportation Systems

  • Park, Min-Young;Kim, Yong-Jin
    • 한국항만경제학회지
    • /
    • 제22권1호
    • /
    • pp.175-198
    • /
    • 2006
  • This paper presents a network capacity model that can be used as an analytical tool for strategic planning and resource allocation for multimodal transportation systems. In the context of freight transportation, the multimodal network capacity problem (MNCP) is formulated as a mathematical model of nonlinear bi-level optimization problem. Given network configuration and freight demand for multiple origin-destination pairs, the MNCP model is designed to determine the maximum flow that the network can accommodate. To solve the MNCP, a heuristic solution algorithm is developed on the basis of a linear approximation method. A hypothetical exercise shows that the MNCP model and solution algorithm can be successfully implemented and applied to not only estimate the capacity of multimodal network, but also to identify the capacity gaps over all individual facilities in the network, including intermodal facilities. Transportation agencies and planners would benefit from the MNCP model in identifying investment priorities and thus developing sustainable transportation systems in a manner that considers all feasible modes as well as low-cost capacity improvements.

  • PDF

네트워크 흐름 모형을 이용한 병행기계(併行機械) 시스템의 스케쥴링 (Parallel Machine Scheduling with an Aid of Network Flow Model)

  • 정남기;박형규;양원섭
    • 대한산업공학회지
    • /
    • 제15권2호
    • /
    • pp.11-22
    • /
    • 1989
  • The problem of scheduling n-jobs on m-uniform parallel machines is considered, in which each job has a release time, a deadline, and a processing requirement. The job processing requirements are allocated to the machines so that the maximum of the load differences between time periods is minimized. Based on Federgruen's maximum flow network model to find a feasible schedule, a polynomially bounded algorithm is developed. An example to show the effectiveness of our algorithm is presented.

  • PDF

HSU의 유량손실을 고려한 정유압 기계식 변속기의 동력특성 해석 (Analysis of Power Characteristics for a Hydromechanical Transmission Considering HSU Flow Loss)

  • 성덕환;이근호;김형의;김현수
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1149-1158
    • /
    • 2002
  • An improved hydrostatic unit(HSU) model is proposed by considering the flow loss in order to analyze the power flow characteristics of a hydromechanical transmission(HMT) and a network analysis algorithm is presented to determine the torque and speed of each element of the HMT. To calculate the torque and flow loss of a pump and a motor in HSU, an effort and flow concept is introduced, which can be used to establish a torque and speed matrix in the network analysis. It is found from the network analysis that magnitude of the HSU stroke increases to maintain the same output speed in order to compensate the flow Boss in the HSU and the efficiency of the HMT shows the lowest value in the 1st speed since the HSU has the largest flow loss in the 1st speed and the flow loss decreases as the speed ratio upshifts.

A comprehensive approach to flow-based seismic risk analysis of water transmission network

  • Yoon, Sungsik;Lee, Young-Joo;Jung, Hyung-Jo
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.339-351
    • /
    • 2020
  • Earthquakes are natural disasters that cause serious social disruptions and economic losses. In particular, they have a significant impact on critical lifeline infrastructure such as urban water transmission networks. Therefore, it is important to predict network performance and provide an alternative that minimizes the damage by considering the factors affecting lifeline structures. This paper proposes a probabilistic reliability approach for post-hazard flow analysis of a water transmission network according to earthquake magnitude, pipeline deterioration, and interdependency between pumping plants and 154 kV substations. The model is composed of the following three phases: (1) generation of input ground motion considering spatial correlation, (2) updating the revised nodal demands, and (3) calculation of available nodal demands. Accordingly, a computer code was developed to perform the hydraulic analysis and numerical modelling of water facilities. For numerical simulation, an actual water transmission network was considered and the epicenter was determined from historical earthquake data. To evaluate the network performance, flow-based performance indicators such as system serviceability, nodal serviceability, and mean normal status rate were introduced. The results from the proposed approach quantitatively show that the water network is significantly affected by not only the magnitude of the earthquake but the interdependency and pipeline deterioration.

이산 균열망에서 다상 흐름에 대한 수치모의 (A Numerical Simulation of Multiphase Flow in a Discrete Fracture Network)

  • 정우창;황만하;고익환;송재우
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.245-249
    • /
    • 2005
  • The numerical simulation of a two-phase flow In a discrete fracture network model is presented in this paper, The purpose of this work is to consider density-driven flows induced by the density difference between hot autochthonous heavy brines and injected cold water. Mechanical consequences of high pressure waves on the fracture permeability and heat exchanges between fluids and rock matrix are neglected in this study. The finite volume method is employed to discretize spatially and the system is solved by using an IMPES(Implicit Pressure-Explicit Saturation) scheme. In order to solve the strong non-linearity of the system, the Newton-Raphson algorithm is used. The well-known Buckeley-Leverett problem is adapted to validate results calculated from the model and a relatively good agreement is obtained.

  • PDF

주성분 분석을 이용한 상수도 관망의 누수감지 (Leak Detection in a Water Pipe Network Using the Principal Component Analysis)

  • 박수완;하재홍;김기민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.276-276
    • /
    • 2018
  • In this paper the potential of the Principle Component Analysis(PCA) technique that can be used to detect leaks in water pipe network blocks was evaluated. For this purpose the PCA was conducted to evaluate the relevance of the calculated outliers of a PCA model utilizing the recorded pipe flows and the recorded pipe leak incidents of a case study water distribution system. The PCA technique was enhanced by applying the computational algorithms developed in this study. The algorithms were designed to extract a partial set of flow data from the original 24 hour flow data so that the variability of the flows in the determined partial data set are minimal. The relevance of the calculated outliers of a PCA model and the recorded pipe leak incidents was analyzed. The results showed that the effectiveness of detecting leaks may improve by applying the developed algorithm. However, the analysis suggested that further development on the algorithm is needed to enhance the applicability of the PCA in detecting leaks in real-world water pipe networks.

  • PDF

우수관망 해석모형과 지표수 침수해석 모형의 연계 적용 (Integrated Application of Stormwater Network Analysis Model and Surfacewater Inundation Analysis Model)

  • 신은택;이상은;엄태수;송창근
    • 한국안전학회지
    • /
    • 제33권5호
    • /
    • pp.78-83
    • /
    • 2018
  • Recently, due to the rapid industrialization and urbanization, a great number of infrastructure and population were concentrated in urban areas. These changes have resulted in unprecedent runoff characteristics in urban basins, and the increase in impermeable areas leads to the growth of the runoff and the peak flow rate. Although many cities have made a lot of efforts to check and expand the stormwater network, the flash flood or the local torrential rain caused a growing number of casualty and property damage. This study analyzed the stormwater passage rate in a target area using SWMM. By incorporating the flow quantity surpassing the storm sewer capacity, a 2D inland flooding analysis model was applied to route the inundated area and velocity.