• Title/Summary/Keyword: Flow level

Search Result 4,333, Processing Time 0.027 seconds

A Study on the Level-Set Scheme for the Analysis of the Free Surface Flow by a Finite Volume Method (유한체적법에 의한 자유수면 유동해석에서 Level-Set 기법에 대한 연구)

  • Il-Ryong Park;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.40-49
    • /
    • 1999
  • A Finite Volume Method for the two-dimensional incompressible, two-fluids Navies-Stokes equation and level-set scheme are used to analyse the interface of two fluids, free-surface flow. The numerical characteristics and the applicability of level-set scheme are brief1y investigated and appraised by solving oscillating small surface wave in a water tank and dam break problems. In the numerical results, a method for improving the convergence of the solution is presented.

  • PDF

Finite Element Analysis of Underground Structural Systems Considering Transient Flow (지하수의 천이흐름을 고려한 지하구조계의 유한요소해석)

  • 김문겸;이종우;박성우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.103-110
    • /
    • 1996
  • In this paper, behaviour of underground structural systems due to excavation and change of groundwater level is analyzed using finite elements. Equilibrium equations based on the effective pressure theory and transient flow equations considering the groundwater level are derived. Integration equations are derived using Galerkin's approximation and time dependent analysis is employed to compute groundwater level change and pore pressures. This computed pore pressures are employed in equilibrium equations and then finally displacements and stresses are computed. The developed program is applied to analyze the behaviour of ground excavation below the groundwater level. The program is also applied to multi-step excavation at the same model. The results show that the displacements of the ground surface are much influenced by the change of the groundwater level. Therefore, it is concluded that the change of the groundwater level should be considered in order to analyze the behaviour of the underground structural systems accurately

  • PDF

The Characteristics on the Groundwater Level Change and Rainfall-Runoff in Moojechi Bog (무제치늪 지역의 지하수위 변동과 강우의 유출 특성)

  • 이헌호;김재훈
    • Korean Journal of Environment and Ecology
    • /
    • v.16 no.3
    • /
    • pp.239-248
    • /
    • 2002
  • This study was conducted to investigate the hydrological characteristics of groundwater level change and rainfall-runoff processes at the Moojechi Bog located in Mt. Jeungjok, Ulsan. The average runoff rate of bog was 0.58 which is similar to that of general mountainous watershed. In the short term hydrograph, runoff was increased slowly and It took a long time to arrive peak flow. After that time, the decreasing pattern of runoff was slower than that of general mountainous watershed. In case of the long term water budget, the Moojechi Bog had a abundant base flow and runoff was continued in spite of non rainfall period. The groundwater level was arrived peak flow immediately after rain stop but was decreased very slowly until the next rain. The change pattern of long term groundwater level was very similar to that of the amount of rain and discharge. The higher rainfall intensity was, the lower slope of recession curve on the groundwater level was and the longer rainfall duration was, the longer peak flow was. Judging from these results, Moojechi bog could be evaluated to have a constant groundwater level.

Relationship between Saliva Factors Measured Using the SILL-Ha Saliva Test System and Blood Cell Counts according to Perceived Stress Scale Scores in Female College Students

  • Lee, Sun-Mi;Jung, Eun-Ha;Jun, Mi-Kyoung
    • Journal of dental hygiene science
    • /
    • v.21 no.3
    • /
    • pp.150-157
    • /
    • 2021
  • Background: Stress as a cause of mental health problems is known to be more prevalent in women than in men and has a negative effect on several aspects of physical health, such as the composition of blood and saliva. This study investigated the relationship of perceived stress with blood cell counts, saliva flow rate, and saliva factors. Methods: We recruited women in their 20s with a high prevalence of stress. Stress was evaluated using the Korean version of the perceived stress scale. Blood tests included white blood cell, hemoglobin, and platelet. We then examined the saliva flow rate and cariogenic bacteria level, acidity, occult blood, buffer capacity, leukocyte level, protein level, and ammonia level using rinse water with the SILL-Ha saliva test system. Results: In a total of 70 participants, the average age was 21.64 years old, the average perceived stress score was 16.96±4.32, and high levels of stress were reported by 80% of the participants (n=56). The high-stress group had lower hemoglobin levels. In addition, the high-stress group showed a lower saliva flow rate than the low-stress group, and there was a difference in the salivary acidity and buffer capacity. The total perceived stress score showed a positive correlation with acidity and negative correlation with buffer capacity and the hemoglobin level. Conclusion: This study found that stress in female college students might affect the composition of blood and saliva. High levels of stress were positively correlated with the hemoglobin level, saliva flow rate, and acidity and negatively correlated with the buffer capacity.

NUMERICAL ANALYSIS OF THREE-DIMENSIONAL SUBSONIC TURBULENT CAVITY FLOWS (3차원 아음속 난류 공동 유동에 대한 수치적 연구)

  • Choi, Hong-Il;Kim, Jae-Soo
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • Generally flight vehicles have many cavities such as wheel wells, bomb bays and windows on their external surfaces and the flow around these cavities makes separation, vortex, shock and expansion waves, reattachment and other complex flow phenomenon. The flow around the cavity makes abnormal and three-dimensional noise and vibration even thought the aspect ratio (L/D) is small. The cavity giving large effects to the flow might make large noise, cause structural damage or breakage, harm the aerodynamic performance and stability, or damage the sensitive devices. In this study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's $\kappa-\omega$ turbulence model. The MPI(Message Passing Interface) parallelized code was used for calculations by PC-cluster. The cavity has the aspect ratios of 2.5, 3.5 and 4.5 with the W/D ratio of 2 for three-dimensional cavities. The Sound Pressure Level (SPL) analysis was done with FFT to check the dominant frequency of the cavity flow. The dominant frequencies were analyzed and compared with the results of Rossiter's formula and Ahuja& Mendoza's experimental datum.

Application of Risk Indexes for Classifying Vulnerable Zone and Planning Structural Alternative in Preparation for Debris Flow Disaster (토사재해 취약 지역 분류 및 구조적 대안 수립을 위한 위험지표 적용)

  • Oh, Seung Myeong;Song, Chang Geun;Jung, Min Hyung;Seong, Joo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.112-116
    • /
    • 2017
  • This study applied risk indexes to the disaster flow event occurred at Mt. Umyeon region in 2011. A 2D hydrodynamic model was employed to calculate flow characteristics, and the model was validated against two dam break flow problems conducted by Bellos and EU CADAM project. The model performance was shown to be satisfactory. In order to determine which index is more appropriate to assess the vulnerability of debris flow, 3 risk indexes (FII, FHR and VDI) were considered. It was found that VDI, which determines the risk level only by the velocity factor, consistently predicted the risk level corresponding to 6 because the velocity range was widely organized. However, in the case of FII and FHR, the risk was reasonably quantified due to combined consideration of significant factors of flow velocity and debris thickness. Therefore, FII and FHR are expected to be more accurate than VDI. However, two indexes still need to be improved to include major factors such as debris density or material properties.

A Study on the Noise Reduction and Performance Improvement of the Hot Water Distributing System (시스템분배기 소음방지 및 성능개선방안 연구)

  • Kim, Yong-Ki;Lee, Tae-Won;Han, Tae-Su;Yoo, Sun-Hak
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1055-1060
    • /
    • 2009
  • Noise is one of the major environmental problems in human life. But hot water distributers with the flow rate control valve bring about often noise according to the heating control condition in residential buildings. The sound power level increased as the flow rate and pressure difference increased. And thus, experimental analyses for the flow rate control and the pressure difference control were carried out in this study to reduce the noise emitted from the flow rate control valve. As the results, the flow rate control method using a SMA(Shape Memory Alloy)-valve and the flow rate control system using a pressure difference sensor can be expected to control noise in the region of below 50 dB of sound power level.

  • PDF

Development of the S/G TSP Clogging Image Analysis Algorithm (증기발생기 유로홈막힘 사진판독 알고리즘 개발)

  • Cho, Nam Cheoul;Kim, Wang Bae;Moon, Chan Kook
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.8-14
    • /
    • 2011
  • The clogging of the flow area at the tube support plates(TSPs), especially at the upper TSPs results in the water level oscillation of a steam generator during normal operation. A reduction of the TSP flow area causes to increase in pressure drop within the two-phase flow zone, which destabilizes the boiling flow through the tube bundle. This phenomenon was occasionally observed at a few domestic and foreign nuclear power plants. One of the methods for defining the flow area clogging is visual inspection, which is the most effective inspection method. The results of the visual inspection for TSPs' flow area are clogging images on TSPs' quartrefoil lobes. These images are complexly distorted due to lens aberration and external factors like the distance to a subject and angle etc. In this work, we developed the analysis algorithm for clogging image of the TSP flow area of steam generators. For this purpose, we designed an image verification device applicable to the camera employed in the field for visual inspection and then, we demonstrated the validity of image analysis algorithm by using this device and commercial autoCAD program.

Effect of Air Layer on the Performance of an Open Ducted Cross Flow Turbine

  • Wei, Qingsheng;Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • Recently, the cross flow turbines attract more attention for their good performance over a large operating regime at off design point. This study employs a very low head cross flow turbine, which has open inlet duct and has barely been studied before, to investigate the performance of the cross flow turbine with air suction from the rear part of the runner. Unlike conventional cross flow turbines, a draft tube is attached to the outlet of runner to improve the turbine performance. Water level and pressure in the draft tube are monitored to investigate the influence of air suction. Torque at local blade passage of three parts of runner is examined in detail under the conditions of different air suction. Consequently, it is found that with proper air suction in the runner chamber, the water level in the draft tube gradually drops to Stage 2 of the runner and the efficiency of the turbine can be raised by 10%. Overall, the effect of air-layer on the performance of the turbine is considerable.

Robustness of Cash Flow Value: Investment in ASEAN

  • LAU, Wei Theng;MAHAT, Fauziah Binti
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.2
    • /
    • pp.247-255
    • /
    • 2019
  • This study examines the different roles of cash flow in assessing investment returns in the Association of Southeast Asian Nations (ASEAN). The analysis covers over 900 listed firms across Malaysia, Indonesia, Philippines, Singapore and Thailand for the period post the Asian financial crisis of 2001-2017. Firm-level panel data analysis shows that cash flow factors are important in all contexts of cash return on assets, earnings quality and market value multiple across the region even after controlling for typical measures of profitability. The results suggest that firms should manage cash flow prudently in considerations of firm value from the shareholder's perspective, measured directly using stock return. Cash profitability on assets should become an important firm performance indicator, whilst higher cash component over reported earnings is preferred. The market also tends to respond favourably to cash flow yield as a price multiple in valuation, outpacing the role of earnings yield. Such findings are robust across the pre and post subprime crisis periods, across estimation methods pertaining to finance panel standard errors, as well as across static and dynamic considerations of returns. It is hence sensible to consider cash flow factors in the research pertaining to asset pricing and factor investing in the ASEAN region.