• 제목/요약/키워드: Flow distribution

검색결과 5,446건 처리시간 0.034초

배전계통조류계산을 위한 새로운 알고리즘에 관한 연구 (A Study on Development of a New Algorithm to Solve Load Flow for Distribution Systems)

  • 문영현;유성영;최병곤;하복남;이중호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.918-922
    • /
    • 1998
  • With the development of industry, the qualitical advancement of power is needed. Since it is placed in the end step of power system, the fault at the distribution system causes some users blackout directly. So if the fault occurs, quick restoration is very important subject and, for the reason, induction of the distribution automation system is now being progressed briskly. For the quick restoration of the faulted distribution system, the load shedding of the blackout-area must be followed, and the other problems like the shedded load, faulted voltage and the rest may cause other accident. Accordingly load shedding must be based on the precise calculation technique during the distribution system load flow(dist flow) calculation. In these days because of its superior convergence characteristic the Newton-Raphson method is most widely used. The number of buses in the distribution system amounts to thousands, and if the fault occurs at the distribution system, the speed for the dist flow calculation is to be improved to apply to the On-Line system. However, Newton-Raphson method takes much time relatively because it must calculate the Jacobian matrix and inverse matrix at every iteration, and in the case of huge load, the equation is hard to converge. In this thesis. matrix equation is used to make algebraical expression and then to solve load flow equation and to modify above defects. Then the complex matrix is divided into real part and imaginary part to keep sparcity. As a result time needed for calculation diminished. Application of mentioned algorithm to 302 bus, 700 bus, 1004 bus system led to almost identical result got by Newton-Raphson method and showed constant convergence characteristic. The effect of time reduction showed 88.2%, 86.4%, 85.1% at each case of 302 bus, 700 bus system 86.4%, and 1004 bus system.

  • PDF

가솔린엔진 흡기매니폴드의 흡기유량 및 분배특성 (Intake-Air Flow and Distribution Characteristics of the Gasoline Engine Intake-Manifold)

  • 염경민;박성영
    • 한국산학기술학회논문지
    • /
    • 제12권11호
    • /
    • pp.4718-4725
    • /
    • 2011
  • 본 연구는 성능 해석을 통하여 1600cc급 흡기매니폴드의 흡기유량 및 분배특성에 대한 연구를 수행하였다. 일차원 엔진 성능해석 프로그램과 3차원 유동해석프로그램을 이용하여 해석을 수행하였다. 흡기 매니폴드의 정상상태 유동해석을 수행한 결과, 일차원 유동해석과 3차원 유동해석의 유량계수 표준편차는 1% 미만으로 우수한 분배특성을 나타내었다. 일차원 해석 결과가 3차원 결과 대비 미소하게 증가된 결과를 보였지만 동등한 유량계수 경향성을 나타냈다. 비정상상태 해석은 분배특성 측면에서 정상상태 해석 결과와 유사한 결과를 보였으며, 정상상태 해석결과를 통한 비정상상태 분배특성의 예측이 가능함을 확인하였다.

Analysis of Flow Characteristics in the Intake System of 6-Cylinder MPI CNG Engine

  • Ha, Seung-Hyun;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.215-222
    • /
    • 2002
  • It has been well acknowledged that intake system plays great role in the performance of reciprocating engine. Well-designed intake system is expected to not only increase engine efficiency but also decrease engine emission, which is one of the most urgent issues in the automotive society. Thorough understanding of the flow in intake system helps great to design adequate intake system. Even though both experimental and numerical methods are used to study intake flow, numerical analysis is more widely used due to its merits in time and economy. Intake system of In-line 6-Cylinder CNG engine was chosen for the analysis ICEM CFD HEXA was used to create 3-D structured grid and FIRE code was used for the flow analysis in the intake system. Due to the complexity of the geometry standard ${\kappa}-{\varepsilon}$ turbulence model was applied. Numerical analysis was performed for various inlet and outlet boundary conditions under both steady and transient flow. Inlet mass flow rate and outlet pressure variation were changing parameters with respect to engine speed. Flow parameters, such as velocity, pressure and flow distribution, were evaluated to provide adequate data of this intake system.

  • PDF

Two-Phase Flow Analysis in Multi-Channel

  • Ha Man-Yeong;Kim Cheol-Hwan;Jung Yong-Won;Heo Seong-Geun
    • Journal of Mechanical Science and Technology
    • /
    • 제20권6호
    • /
    • pp.840-848
    • /
    • 2006
  • We carried out numerical studies to investigate the single- and two-phase flow characteristics in the single- and multi-channels. We used the finite volume method to solve the mass and momentum conservation equations. The volume of fluid model is used to predict the two-phase flow in the channel. We obtained the distribution of velocity fields, pressure drop and air volume fraction for different water mass flow rates. We also calculated the distribution of mass flow rates in the multi-channels to understand how the flow is distributed in the channels. The calculated results for the single- and two-phase flow are partly compared with the present experimental data both qualitatively and quantitatively, showing relatively good agreement between them. The numerical scheme used in this study predicts well the characteristics of single-and two-phase flow in a multi-channel.

엘리베이터 카 내부 기류분포에 관한 열 유동해석 (Thermal and Fluid Analysis on Air Distribution in a Elevator Car)

  • 정경택;이중섭
    • 한국기계가공학회지
    • /
    • 제19권1호
    • /
    • pp.56-62
    • /
    • 2020
  • The purpose of this study is to observe the visualization of the flow field for air flow distributed in the car from the ventilation fan installed in the ceiling of the passenger elevator car through the numerical analysis using computational fluid dynamics. STAR-CCM+, which is a code used for the numerical analysis, was used to predict the airflow distribution inside the elevator car. The numerical analysis of the distribution of the air current in the elevator was carried out. As a result, the analysis results for each point and the visualization of the air current distribution and the temperature distribution in the elevator car and were obtained. It was found that heat transfer was actively occurring inside the car due to the influence of the flow field discharged from the ventilation vent installed in the ceiling in the elevator car, and especially the convection heat transfer of Model-2 was more active than that of Model-1. As a result, the temperature distribution inside the car was found to be relatively low. In addition, the temperature distribution at a cross-section of 1700mm height in the elevator car shows that Model-2 is the location of the ventilation vent which makes people feel more comfortable.

엔진 유동장에서 분사시기에 따른 혼합기의 기ㆍ액상 농도 분포에 관한 연구 (Concentration Distribution of Liquid/vapor Phases under In-Cylinder Flow Field with Different Injection Timings)

  • 김한재;최동석;김덕줄
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.96-104
    • /
    • 2001
  • The present study experimentally investigates the concentration distribution of liquid and vapor phase with different injection timings in the in-cylinder flow field of a optically accessible engine. The conventional MPI, DOHC engine was modified into DI gasoline engine. The images of liquid and vapor phases in the motoring engine were captured by using exciplex fluorescence method. Dopants used in this study were 2% fluorobenzene and 9% DEMA(diethyl-methyl-amino) in 89% solution of hexane by volume respectively. Two dimensional spray fluorescence images of liquid and vapor phases were acquired to analyze spray behaviors and fuel distribution in the in-cylinder flow field. Measurements were carried out fur four different injection timings, namely BTDC 270$^{\circ}$, 180$^{\circ}$, 90$^{\circ}$, and 50$^{\circ}$. Experimental results indicate that behaviors and distribution of vapor phase were largely affected by in-cylinder tumble flow, and mixture formation process was also greatly affected by in-cylinder flow at early injection mode and by ambient pressure at late injection mode.

  • PDF

소듐냉각고속로 부수로 해석코드 검증을 위한 37봉다발 실험방법 개념 개발 (Experimental Methodology Development for SFR Subchannel Analysis Code Validation with 37-Rods Bundle)

  • 어동진;장석규;배황;김석;김형모;최해섭;최선락;이형연
    • 한국유체기계학회 논문집
    • /
    • 제17권6호
    • /
    • pp.89-94
    • /
    • 2014
  • The 4th generation SFR is being designed with a milestone of construction by 2028. It is important to understand the subchannel flow characteristics in fuel assembly through the experimental investigations and to estimate the calculation uncertainties for insuring the confidence of the design code calculation results. The friction coefficient and the mixing coefficient are selected as primary parameters. The two parameters are related to the flow distribution and diffusion. To identify the flow distribution, an iso-kinetic method was developed based on the previous study. For the mixing parameters, a wire mesh system and a laser induced fluorescence methods were developed in parallel. The measuring systems were adopted on 37 rod bundle test geometry, which was developed based on the Euler number scaling. A scaling method for a design of experimental facility and the experimental identification techniques for the flow distribution and mixing parameters were developed based on the measurement requirement.

흐름 메카니즘에 의한 깔따구의 분포(II) - 수치계산 - (The Distribution of Chironomids by flow Mechanisms - Numerical Computation -)

  • 이상호;이정민;김태원;박종표
    • 한국물환경학회지
    • /
    • 제22권1호
    • /
    • pp.159-165
    • /
    • 2006
  • Numerical simulation of turbulence flow in a circulating channel was performed. The RNG $k-\varepsilon$ model and Reynolds stress model of the FLUENT was used for evaluating the flow mechanisms. The simulation results were compared with the experimental data measured by a ADV (Acoustic Doppler Velocitmeter). The distribution of chironomids was analyzed by the computational results. They distributed at the region of lower velocities and lower turbulence intensity. In the case of a hemisphere structure being located on the straight section, chironomids lived in the upstream and downstream area of the hemisphere. The secondary currents also affected the distribution of chironomids. In conclusion, the computational fluid dynamic techniques can be inexpensively applied for analysing the relationship between flow characteristics and distribution of benthic macroinvertebrates.

200 t/d급 MHI 석탄 가스화기의 석탄 및 공기 배분에 따른 가스화 특성 평가 (Influence of coal and air flow rate distribution on gasification characteristics in 200 t/d scale MHI coal gasifier)

  • 도윤영;예인수;김봉근;류창국
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.93-96
    • /
    • 2015
  • Commercial coal gasifiers typically use entrained flow type reactors, but have unique features in terms of reactor shape, gasifying agent, coal feeding type, ash/slag discharge, and reaction stages. The MHI gasifier is characterized as air-blow dry-feed entrained reactor, which incorporates a short combustion stage at the bottom and a tall gasification stage above. This study investigates the flow and reaction characteristics inside a MHI gasifier by using computational fluid dynamics (CFD) in order to understand its design and operation features. For its pilot-scale system at 200 ton/day capacity, the distribution of coal and air supply between the two reaction stages was varied. It was found that the syngas composition and carbon conversion rate were not significantly influenced by the changes in the distribution of coal and air supply. However, the temperature, velocity and flow pattern changed sensitively to the changes in the distribution of coal and air supply. The results suggest that one key factor to determine the operational ranges of coal and air supply would be the temperature and flow pattern along the narrower wall between the two reaction stages.

  • PDF

주위기체내에서의 두 액체분무간의 유동간섭현상에 대한 정상적 고찰 (An Experimental Study on the Behavior of Twin-Spray with Flow Interaction in a Condensable Environment)

  • 이상룡;정태식;한기수
    • 대한기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.326-334
    • /
    • 1986
  • The effects of flow interaction between adjacent sprays in twin-spray system on the spatial distribution of injected liquid (water) and drop size distribution in condensable (steam) environment were carefully observed through experiments. The spatial distribution of injected liquid in twin-spray system appears to be more uniform than the simple superposition of the spatial distributions of liquid obtained from each individual spray. Drop size distribution was obtained by using the immersion sampling technique. It was found that, in the twin-spray, the larger numbers of small drops are collected throughout the spraying region due to the increase of entrainment velocity of ambient steam compared with the case of simple superposition of each individual spray. Moreover, in the overlapped portion of the twin-spray, the drop size distribution was changed also due to the collision between large drops. As a result, the behavior of twin-spray system (and eventually multiple-spray system) can not be predicted precisely by simple superposition of the behaviors of each constituting spray. Hence, for the design of multiple spray system, the effect of flow interaction between sprays should be taken into account seriously.