• Title/Summary/Keyword: Flow development

Search Result 6,289, Processing Time 0.039 seconds

Development of Long Term Flow Duration Curves in 4 River Basins for the Management of Total Maximum Daily Loads (수질오염총량관리를 위한 4대강수계 장기유황곡선 작성방안)

  • Park, Jun Dae;Oh, Seung Young
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.343-353
    • /
    • 2013
  • Flow duration curve (FDC) can be developed by linking the daily flow data of stream flow monitoring network to 8-day interval flow data of the unit watersheds for the management of Total Maximum Daily Loads. This study investigated the applicable method for the development of long term FDC with the selection of the stream flow reference sites, and suggested the development of the FDC in 4 river basins. Out of 142 unit watersheds in 4 river basins, 107 unit watersheds were shown to estimate daily flow data for the unit watersheds from 2006 to 2010. Short term FDC could be developed in 64 unit watersheds (45%) and long term FDC in 43 unit watersheds (30%), while other 35 unit watersheds (25%) were revealed to have difficulties in the development of FDC itself. Limits in the development of the long term FDC includes no stream monitoring sites in certain unit watersheds, short duration of stream flow data set and missing data by abnormal water level measurements on the stream flow monitoring sites. To improve these limits, it is necessary to install new monitoring sites in the required areas, to keep up continuous monitoring and make normal water level observations on the stream flow monitoring sites, and to build up a special management system to enhance data reliability. The development of long term FDC for the unit watersheds can be established appropriately with the normal and durable measurement on the selected reference sites in the stream flow monitoring network.

Damage Effect on Glass Fibre Reinforced Plastics under Airflow by a Continuous Wave Laser (연속발진 레이저에 의한 공기 유동에 노출된 유리섬유 강화 플라스틱 손상효과)

  • Lee, Kwang Hyun;Shin, Wan-Soon;Kang, Eung-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.293-299
    • /
    • 2015
  • We analyzed the damage effect on Glass Fibre Reinforced Plastics(GFRP) under air flow by irradiation of continuous wave near-IR laser. Damage process and temporal temperature distribution were demonstrated and material characteristics were observed with laser intensity, surface flow speed and angle. Surface temperature on GFRP rapidly increased with laser intensity, and the damaged pattern was different with flow characteristics. In case of no flow, penetration on GFRP by burning and flame generation after laser irradiation was appeared at once. GFRP was penetrated by the heat generated from resin ignition. In case of laser irradiation under flow, a flame generated after burning extinguished at once by flow and penetration pattern on GFRP were differently shown with flow angle. From the results, we presented the damage process and its mechanism.

A Behavior of the Diffuser Rotating Stall in a Low Specific Speed Mixed-Flow Pump

  • Miyabe, Masahiro;Furukawa, Akinori;Maeda, Hideaki;Umeki, Isamu;Jittani, Yoshinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.31-39
    • /
    • 2009
  • The flow instability in a low specific speed mixed-flow pump, having a positive slope of head-flow characteristics was investigated. Based on the static pressure measurements, it was found that a rotating stall in the vaned diffuser occurs at about 65% flow rate of best efficiency point (BEP). A dynamic Particle Image Velocimetry (DPIV) measurement and the numerical simulations were conducted in order to investigate the flow fields. As a result, the diffuser rotating stall was simulated even by Computational Fluid Dynamics (CFD) and the calculated periodic flow patterns agree well with the measured ones by DPIV. It is clarified that a periodical large scaled backflow, generated at the leading edge of the suction surface of the diffuser vane, causes the instability. Furthermore, the growth of the strong vortex at the leading edge of the diffuser vane induces the strong backflow from the diffuser outlet to the inlet. The scale of one stall cell is covered over four-passages in total thirteen vane-passages.

LAMINAR FLOW IN THE ENTRANCE REGION OF HELICAL TUBES FOR UNIFORM INLET VELOCITY CONDITIONS (균일입구유속 조건의 나선관 입구영역의 층류 유동)

  • Kim, Y.I.;Park, J.H.
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.21-27
    • /
    • 2008
  • A numerical study for laminar flow in the entrance region of helical tubes for uniform inlet velocity conditions is carried out by means of the finite volume method to investigate the effects of Reynolds number, pitch and curvature ratio on the flow development. This results cover a curvature ratio range of 1/10$\sim$1/320, a pitch range of 0.0$\sim$3.2, and a Reynolds number range of 125$\sim$2000. It has been found that the curvature ratio does significantly effect on the angle of flow development, but the pitch and Reynolds number do not. The characteristic angle $\phi_c(=\phi/\sqrt{\delta})$, or the non-dimensional length $\overline{l}(=l\sqrt{\delta}cos(atan\lambda)/d)$ can be used to represent the flow development for uniform inlet velocity conditions. In uniform inlet velocity conditions, the growth of boundary layer delays the flow development attributed to centrifugal force, and in which conditions the amplitude of flow oscillations is smaller than that in parabolic inlet velocity conditions. If the pitch increases or if the curvature ratio or Reynolds number decreases, the minimum friction factor and the fully developed average friction factor normalized with the friction factor of a straight tube and the flow oscillations decrease.

Floop: An efficient video coding flow for unmanned aerial vehicles

  • Yu Su;Qianqian Cheng;Shuijie Wang;Jian Zhou;Yuhe Qiu
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.615-626
    • /
    • 2023
  • Under limited transmission conditions, many factors affect the efficiency of video transmission. During the flight of an unmanned aerial vehicle (UAV), frequent network switching often occurs, and the channel transmission condition changes rapidly, resulting in low-video transmission efficiency. This paper presents an efficient video coding flow for UAVs working in the 5G nonstandalone network and proposes two bit controllers, including time and spatial bit controllers, in the flow. When the environment fluctuates significantly, the time bit controller adjusts the depth of the recursive codec to reduce the error propagation caused by excessive network inference. The spatial bit controller combines the spatial bit mask with the channel quality multiplier to adjust the bit allocation in space to allocate resources better and improve the efficiency of information carrying. In the spatial bit controller, a flexible mini graph is proposed to compute the channel quality multiplier. In this study, two bit controllers with end-to-end codec were combined, thereby constructing an efficient video coding flow. Many experiments have been performed in various environments. Concerning the multi-scale structural similarity index and peak signal-to-noise ratio, the performance of the coding flow is close to that of H.265 in the low bits per pixel area. With an increase in bits per pixel, the saturation bottleneck of the coding flow is at the same level as that of H.264.

Identification of venular capillary remodelling: a possible link to the development of periodontitis?

  • Townsend, David
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.1
    • /
    • pp.65-76
    • /
    • 2022
  • Purpose: The present study measured changes in arteriolar and venular capillary flow and structure in the gingival tissues during the development of plaque-induced gingival inflammation by combining dynamic optical coherence tomography (OCT), laser perfusion, and capillaroscopic video imaging. Methods: Gingival inflammation was induced in 21 healthy volunteers over a 3-week period. Gingival blood flow and capillary morphology were measured by dynamic OCT, laser perfusion imaging, and capillaroscopy, including a baseline assessment of capillary glycocalyx thickness. Venular capillary flow was estimated by analysis of the perfusion images and mean blood velocity/acceleration in the capillaroscopic images. Readings were recorded at baseline and weekly over the 3 weeks of plaque accumulation and 2 weeks after brushing was resumed. Results: Perfusion imaging demonstrated a significant reduction of gingival blood flow after 1 and 2 weeks of plaque accumulation (P<0.05), but by 3 weeks of plaque accumulation there was a more mixed picture, with reduced flow in some participants and increased flow in others. Participants with reduced flux at 3 weeks also demonstrated venular-type flow as determined by perfusion images and evidence of the development of venular capillaries as assessed by the velocity/acceleration ratio in capillaroscopic images. After brushing resumed, these venular capillaries were broken down and replaced by arteriolar capillaries. Conclusions: After 3 weeks of plaque accumulation, there was wide variation in microvascular reactions between the participants. Reduced capillary flow was associated with the development of venular capillaries in some individuals. This is noteworthy, as an early increase in venous capillaries is a key vascular feature of cardiovascular disease, psoriasis, Sjögren syndrome, and rheumatoid arthritis-diseases with a significant association with the development of severe gingival inflammation, which leads to periodontitis. Future investigations of microvascular changes in gingival inflammation might benefit from accurate capillary flow velocity measurements to assess the development of venular capillaries.

Multiparameter Flow Cytometry: Advances in High Resolution Analysis

  • O'Donnell, Erika A.;Ernst, David N.;Hingorani, Ravi
    • IMMUNE NETWORK
    • /
    • v.13 no.2
    • /
    • pp.43-54
    • /
    • 2013
  • Over the past 40 years, flow cytometry has emerged as a leading, application-rich technology that supports high-resolution characterization of individual cells which function in complex cellular networks such as the immune system. This brief overview highlights advances in multiparameter flow cytometric technologies and reagent applications for characterization and functional analysis of cells modulating the immune network. These advances significantly support highthroughput and high-content analyses and enable an integrated understanding of the cellular and molecular interactions that underlie complex biological systems.

A Hydrological Study on Sources for Water Resoources Development in Korea. (우리나라 수자원의 근원에 대한 수문학적연구)

  • 박성우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.4
    • /
    • pp.2063-2077
    • /
    • 1970
  • The Purpose of this study is to give the hydrologically basic data for the development of water resources in Korea and a quantity of daily average precipitation and its frequency in a year are investigated to study the presumption which is affected to river flow. Characteristics of precipitation is poor as source of water resources compared with its efficiency. So, because of such characteristics of precipitation, river flow also is in harmony and distribution of river flow comes to the result of irregularity, that is, range of river coefficiet between the quantity of maximum river flow and others river flow is big, and it is insufficient as source of water resources. Yearly river flow being expressed by daily unit indicates the ratio(%) of distribution to total yearly river flow, and the model of hydrograph is drawn up. The gives the basis to make yearly water balance sheet. This study is not completed, yet but in forth-coming days, the water will try continuously to give more correct basis for the development of water resources according to a great deal of data.

  • PDF

The Initial Film Flow Development of the High-Pressure Swirl Spray (고압스월분무 액막유동의 초기 발달과정에 대한 연구)

  • Moon, Seok-Su;Abo-Serie, Essam;Choi, Jae-Joon;Bae, Choong-Sik
    • Journal of ILASS-Korea
    • /
    • v.11 no.4
    • /
    • pp.212-219
    • /
    • 2006
  • The initial film flow development of the high-pressure swirl spray was investigated at different injector operating conditions to analyze film flow development and to provide the input data for the modeling works. This result can be also useful to verify the previously simulated results. The initial flow conditions such as liquid film thickness, flow angle and flow divergence are obtained by visualizing the inside and near the nozzle flow with a microscopic imaging system. The visualized images are quantified using an image processing tool. From the information of liquid film thickness and flow angle, the initial axial and tangential velocity and the swirl number of the swirl spray are successfully determined at various operating conditions. The experimental results showed that the initial liquid film thickness, flow angle and flow divergence are remained constant when the injection pressure is increased. However, initial film conditions are severely changed when the fuel temperature is increased. The swirl number remained constant when the injection pressure is increased while it showed increased value at high fuel temperature condition.

  • PDF

Computational Studies on the Performance of Flow Distributor in Tank (탱크 내부 유동 분사장치 성능에 대한 수치해석적 연구)

  • Shin, Soo Jai;Kim, Young In;Ryu, Seungyeob;Bae, Youngmin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.115-122
    • /
    • 2014
  • The optimal design of the flow distributor is very important to ensure the structural integrity of the reactor system and their safe operation during some transient or accident conditions. In the present study, we numerically investigated the performance of a flow distributor in tank with different shape factors such as the total number of the holes, the pitch-to-hole diameter ratios (p/d), the diameter of the hole and the area ratios. These data will contribute to a design of the flow distributor.