• Title/Summary/Keyword: Flow control system

Search Result 3,067, Processing Time 0.028 seconds

A Study for Control using DC Gain and Time Constant of Flow Controller Operated by Piezoelectric Actuator and Thermocouple (열전대 센서와 압전체 구동기가 부착된 유량제어기의 DC 이득과 시상수를 이용한 제어에 대한 연구)

  • Lee, Sang-Kyung;Kim, Young-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.79-83
    • /
    • 2004
  • This study was how to control the mass flow controller in gas supplying system. The flow controller consists of piezoelectric material and sensor with heating wire. It is difficult to obtain accurate model, because MFC was composed of many parts, and the relationship between input and output of controller is nonlinear. The model for control was obtained by time constant and DC gain Based on this model, PID controller was applied to flow controller using DSP board. Also, the results were compared to controller using system identification.

  • PDF

Performance of Flow Rate Control of a Cavitating Venturi (캐비테이션 벤튜리의 유량제어 성능)

  • Cho Won Kook;Moon Yoon Wan;Kim Young-Mog
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.146-151
    • /
    • 2002
  • Characteristics of flow rate control has been studied for a cavitating venturi adopted in a liquid rocket propellant feed system. Numerical simulation has been peformed to give about $10\%$ discrepancy of mass flow rate to the experimental data for cavitating flow regime. Mass flow rate is confirmed to be saturated for pressure difference higher than $3\times10^5$pa when the upstream pressure is fixed to $22.8\times10^5$pa and the downstream pressure is varied. The evaporation amount depends substantially to non-condensable gas concentration. However the mass flow rate characteristic is relatively insensitive to the mass fraction of non-condensable gas. So it is reduced by only $2\%$ when the non- condensable gas concentration is increased from 1.5PPM to 150PPM. From the previous comparison the expansions of the non-condensable gas and the evaporation of liquid are verified to have same effect to pressure recovery.

  • PDF

DEVELOPMENT OF MATDYMO(MULTI-AGENT FOR TRAFFIC SIMULATION WITH VEHICLE DYNAMICS MODEL) II: DEVELOPMENT OF VEHICLE AND DRIVER AGENT

  • Cho, K.Y.;Kwon, S.J.;Suh, M.W.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.145-154
    • /
    • 2006
  • In the companion paper, the composition and structure of the MATDYMO (Multi-Agent for Traffic Simulation with Vehicle Dynamic Model) were proposed. MATDYMO consists of the road management system, the vehicle motion control system, the driver management system, and the integration control system. Among these systems, the road management system and the integration control system were discussed In the companion paper. In this paper, the vehicle motion control system and the driver management system are discussed. The driver management system constructs the driver agent capable of having different driving styles ranging from slow and careful driving to fast and aggressive driving through the yielding index and passing index. According to these indices, the agents pass or yield their lane for other vehicles; the driver management system constructs the vehicle agents capable of representing the physical vehicle itself. A vehicle agent shows its behavior according to its dynamic characteristics. The vehicle agent contains the nonlinear subcomponents of engine, torque converter, automatic transmission, and wheels. The simulation is conducted for an interrupted flow model and its results are verified by comparison with the results from a commercial software, TRANSYT-7F. The interrupted flow model simulation is implemented for three cases. The first case analyzes the agents' behaviors in the interrupted flow model and it confirms that the agent's behavior could characterize the diversity of human behavior and vehicle well through every rule and communication frameworks. The second case analyzes the traffic signals changed at different intervals and as the acceleration rate changed. The third case analyzes the effects of the traffic signals and traffic volume. The results of these analyses showed that the change of the traffic state was closely related with the vehicle acceleration rate, traffic volume, and the traffic signal interval between intersections. These simulations confirmed that MATDYMO can represent the real traffic condition of the interrupted flow model. At the current stage of development, MATDYMO shows great promise and has significant implications on future traffic state forecasting research.

An Interior Point Method based Reactive Optimal Power Flow Incorporating Margin Enhancement Constraints

  • Song Hwa-Chang;Lee Byong-Jun;Moon Young-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.152-158
    • /
    • 2005
  • This paper describes a reactive optimal power flow incorporating margin enhancement constraints. Margin sensitivity at a steady-state voltage instability point is calculated using invariant space parametric sensitivity, and it can provide valuable information for selection of effective control parameters. However, the weakest buses in neighboring regions have high margin sensitivities within a certain range. Hence, the control determination using only the sensitivity information might cause violation of operational limits of the base operating point, at which the control is applied to enhance voltage stability margin in the direction of parameter increase. This paper applies an interior point method (IPM) to solve the optimal power flow formulation with the margin enhancement constraints, and shunt capacitances are mainly considered as control variables. In addition, nonlinearity of margin enhancement with respect to control of shunt capacitance is considered for speed-up control determination in the numerical example using the IEEE 118-bus test system.

Transient Flow Behavior of Propellant with Actuation of Thrust Control Valve in Satellite Propulsion System (위성 추진시스템의 추력제어밸브 작동에 따른 추진제 비정상 유동 특성)

  • Kim, Jeong-Soo;Han, Cho-Young;Choi, Jin-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.294-298
    • /
    • 2001
  • Satellite propulsion system is employed for orbit transfer, orbit correction, and attitude control. The monopropellant feeding system in the low-earth-orbit satellite blowdowns fuel to the thrust chamber. The thrust produced by the thruster depends on fuel amount flowed into the combustion chamber. If the thruster valve be given on-off signal from on-board commander in the satellite, valve will be opened or closed. When the thrusters fire fuel flows through opened thruster valve. Instantaneous stoppage of flow in according to valve actuation produces transient pressure due to pressure wave. This paper describes transient pressure predictions of the KOMPSAT2 propulsion system resulting from latching valve and thrust control valve operations. The time-dependent set of the fluid mass and momentum equations are calculated by Method of Characteristics (MOC).

  • PDF

UPFC Performance Control in Distribution Networks for DG Sources in the Islanding

  • Fandawi, Ahmed;Nazarpour, Daryoosh
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.303-309
    • /
    • 2017
  • The flexible AC transmission system (FACTS) provides a new advanced technology solution to improve the flexibility, controllability, and stability of a power system. The unified power flow controller (UPFC) is outstanding for regulating power flow in the FACTS; it can control the real power, reactive power, and node voltage of distribution networks. This paper investigates the performance of the UPFC for power flow control with a series of step changes in rapid succession in a power system steady state and the response of the UPFC to distribution network faults and islanding mode. Simulation was carried out using the MATLAB's simulink sim power systems toolbox. The results, which were carried out on a 5-bus test system and a 4-bus multi-machine electric power system, show clearly the effectiveness and viability of UPFC in rapid response and independent control of the real and reactive power flows and oscillation damping [6].

An Experimental Study on Control Performance of Radiant Floor Cooling Using Ondol (온돌을 이용한 바닥복사냉방의 제어성능에 관한 실험적 연구)

  • 김용이;임재한;한여명;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1165-1173
    • /
    • 2001
  • The objectives of this study are to analyze the application of radiant floor cooling and to evaluate the control methods through experiments when the radiant heating system is used for cooling. Through the experiment analysis the control methods such as on/off control, variable flow control and outdoor reset with indoor temperature feedback control are evaluated and compared. The cooling curve (reset ratio) is found for radiant cooling, which shows tole relation between outside air temperature and supply water temperature. Comparison of cooling methods shows that outdoor reset with indoor temperature feedback control is more appropriate than on/off control and variable flow control with regard to prevention of the condensation and thermal comfort.

  • PDF

A Controller Design of the Bilinear System for HVAC(Heating, Ventilating and Air-conditioning) System (냉난방 시스템의 이중선형 시스템에 관한 제어기 설계)

  • 이정석;강민수;김명호;이기서
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.4
    • /
    • pp.177-184
    • /
    • 2000
  • In this paper, a HVAC controller which has a bilinear system is designed to control the air temperature in building room and a saving of energy on the HVAC system. For modeling of the HVAC bilinear system, AHU(Air Handling Unit) is modeled on the control of inside-outside air flow using three dampers in a duct. A heat exchanger and the single room are also modeled by the energy conservation law. Under the modeling of the HVAC bilinear system, the control's law of the bilinear HVAC system is derived by Lyapunov's non-linear theory and Deress's the linear feedback laws for bilinear system. In this paper it was proved that the controller of the HVAC bilinear system is able to control the air temperature with a disturbance in order to get a target of temperature in the building room by the computer simulation when the control inputs regulate the air flow rate and a capacity of the heat exchanger.

  • PDF

The comparison of the output characteristics of 2-DOF PID controller in the multivariable flow control system with delayed time (지연시간을 갖는 다변수 유량제어 시스템의 2-자유도 PID 제어기 특성 비교)

  • Kim, Dong-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.744-752
    • /
    • 1999
  • In this paper, we studied the response characteristics of $\alpha$, $\beta$ separated type, combined type, PI typed, and feedforward type in 2DOF-PID controller through the simulation and the experiments designed with the multivariable flow control system. The parameters $\alpha$ and $\beta$ give an affect to characteristics of controller in separated type but $\gamma$ does not give an affect to the characteristics of 2-DOF PID. The more $\beta$ increases, the more overshoot decreases and especially, in case of PI type represent clearly. The $\alpha$, $\beta$ separated type has a very small overshoot and its magnitudes in 2-DOF PID onctroller increases in order of $\alpha$, $\beta$ combined type, PI type, feedforward type, conventional type. The response characteristics of simulation are similar to that of experiments but the experimental characteristics in the multivariable flow control system has the delayed response. The time delay of response in experiments depends on 2-DOF parameter $\alpha$, $\beta$, $\gamma$ and the overshoot increase as the $\alpha$, $\beta$, $\gamma$ increase. So, we can have a satisfactory response by tuning D gain.

  • PDF

A Study on the Enhancement of Available Transfer Capability Using the Flexible AC Transmission System (FACTS)

  • Gim, Jae-Hyeon;Kim, Yang-Il;Jeung, Sung-Won
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.192-200
    • /
    • 2004
  • This paper evaluates FACTS control on the available transfer capability (ATC) enhancement. Technical merits of FACTS technology on boosting ATC are analyzed. More effective control means for line flow and bus voltage require the application of FACTS. In this paper, the power flow calculation method for the power systems with FACTS is based on the current injection model (CIM) and the Newton-Raphson method. An integrated scheme for ATC calculation, which considers the dynamic characteristic of the power system, is suggested. The study is applied to the IEEE 57-bus power system to demonstrate the effectiveness of FACTS control on ATC enhancement.