• Title/Summary/Keyword: Flow control strategy

Search Result 188, Processing Time 0.032 seconds

Control of Advanced Reactor-coupled Heat Exchanger System: Incorporation of Reactor Dynamics in System Response to Load Disturbances

  • Skavdahl, Isaac;Utgikar, Vivek;Christensen, Richard;Chen, Minghui;Sun, Xiaodong;Sabharwall, Piyush
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1349-1359
    • /
    • 2016
  • Alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) are presented in this paper. One scheme is designed to control the cold outlet temperature of the SHX ($T_{co}$) and the hot outlet temperature of the intermediate heat exchanger ($T_{ho2}$) by manipulating the hot-side flow rates of the heat exchangers ($F_h/F_{h2}$) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the control of the cold outlet temperature of the SHX ($T_{co}$) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The third option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.

Effect of Dietary Nutrient Composition on Growth and Body Composition of Juvenile Olive Flounder Paralichthys olivaceus with Different Feeding Strategy (사료내 영양소가 사료공급전략에 따른 넙치 유어기의 성장과 체조성에 미치는 영향)

  • Cho, Sung-Hwoan
    • Journal of Aquaculture
    • /
    • v.20 no.1
    • /
    • pp.56-59
    • /
    • 2007
  • Effect of dietary nutrient composition on growth and body composition of juvenile olive flounder Paralichthys olivaceus with different feeding strategy was determined. Twenty-five fish averaging 16 g were randomly distributed into 12, 180 L flow-through tank each. Four treatments in triplicates were prepared: fish were fed to satiation twice daily by the control diet for 8 weeks as the control group (Con) and fish were fed to satiation twice daily by the control and high nutrient diets for 6 weeks after 2-week fasting (2WS-6WFC, 2WS-6WFHN, respectively) and finally, fish were fed to satiation twice daily by the high nutrient diet for the consecutive 3 days after 4-day fasting for 8 weeks (4DS-3DFHN). No significant difference was found in either survival or weight gain of flounder among treatments. Feed efficiency ratio (FER) for fish in the 2WS-6WFHN treatment was significantly higher than that for fish in the Con and 2WS-6WFC treatments. Protein efficiency ratio (PER) of fish in the 2WS-6WFHN and 4DS-3DFHN treatments was significantly higher than that of fish in the 2WS-6WFC treatment. In conclusion, manipulation of dietary nutrient composition and/or feeding strategy can effectively improve growth of juvenile olive flounder without growth retardation at restricted feeding regime.

A Novel Control Strategy for HEV Using Brushless Dual-Mechanical-Port Electrical Machine on Cruising Condition

  • Wang, Ende;Huang, Shenghua;Wan, Shanming;Chen, Xiao
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.523-531
    • /
    • 2014
  • Brushless Dual-Mechanical-Port Electrical Machine (BLDMPEM) is a new type of motor designed for Hybrid Electric Vehicle (HEV), which contains two mechanical ports and two electric ports. Compared with Dual-Mechanical-Port Electrical Machine (DMPEM), the brushless structure brings higher reliability and easier maintenance. In this paper, the model of BLDMPEM is discussed. In Chapter 2, the energy flow and mathematical model of BLDMPEM are analyzed. Then a novel three-phase half-bridge controlled rectifier topology and its control strategy for cruising mode of HEV based on BLDMPEM are proposed in Chapter 3. Compared with the Field Oriented Control (FOC) strategy of BLDMPEM, the proposed method does not require accurate motor parameters, and it is much simpler and easier to be implemented. At last, simulation and experiment results show the feasibility and validity of the proposed strategy.

Flow Control of Smart UAV Airfoil Using Synthetic Jet Part 2 : Flow control in Transition Mode Using Synthetic Jet (Synthetic jet을 이용한 스마트 무인기(SUAV) 유동제어 Part 2 : 천이 비행 모드에서 synthetic jet을 이용한 유동제어)

  • Kim, Min-Hee;Kim, Sang-Hoon;Kim, Woo-Re;Kim, Chong-Am;Kim, Yu-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1184-1191
    • /
    • 2009
  • In order to reduce the download around the Smart UAV(SUAV) at Transition mode, flow control using synthetic jet has been performed. Many of the complex tilt rotor flow features are captured including the leading and trailing edge separation, and the large region of separated flow beneath the wing. Based on the results of part 1 of the present work, synthetic jet is located at 0.01c, $0.95c_{flap}$ and it is operated with the non-dimensional frequency of 0.5, 5 to control the leading edge and trailing edge separation. Consequently, download is substantially reduced compared to with no control case at transition mode using leading edge jet only. The present results show that the overall flight performance and stability of the SUAV can be remarkably improved by applying the active flow control strategy based on synthetic jet.

A Study on Real time Multiple Fault Diagnosis Control Methods (실시간 다중고장진단 제어기법에 관한 연구)

  • 배용환;배태용;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.457-462
    • /
    • 1995
  • This paper describes diagnosis strategy of the Flexible Multiple Fault Diagnosis Module for forecasting faults in system and deciding current machine state form sensor information. Most studydeal with diagnosis control stategy about single fault in a system, this studies deal with multiple fault diagnosis. This strategy is consist of diagnosis control module such as backward tracking expert system shell, various neural network, numerical model to predict machine state and communication module for information exchange and cooperate between each model. This models are used to describe structure, function and behavior of subsystem, complex component and total system. Hierarchical structure is very efficient to represent structural, functional and behavioral knowledge. FT(Fault Tree). ST(Symptom Tree), FCD(Fault Consequence Diagrapy), SGM(State Graph Model) and FFM(Functional Flow Model) are used to represent hierachical structure. In this study, IA(Intelligent Agent) concept is introduced to match FT component and event symbol in diagnosed system and to transfer message between each event process. Proposed diagnosis control module is made of IPC(Inter Process Communication) method under UNIX operating system.

  • PDF

Plasma control Using a Linear Quadratic Regulated RF Impedance Match Process

  • Kim, Byung-Whan;Park, Jang-Hyun;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.31.2-31
    • /
    • 2001
  • A real-time control strategy is presented for plasma control Rather than in-situ plasma variables, this is based on realtime measurements of two electrical positions that correspond to two match motors. Using the rf match monitor system, the positions were collected. The process of impedance matching was identified with variations in process factors, including rf power, pressure, and O$_2$ flow rate. A state-space model was obtained basing on autoregressive moving average model. For this model, a linear quadratic regulator was designed and applied. Simulation results revealed that match positions could accurately be regulated to follow certain positions arbitrarily chosen.

  • PDF

Injection volume control of carboxy-gun using a solenoid valve (솔레노이드 밸브를 이용한 카복시 건의 주입량 제어)

  • Tak, Tae-Oh;Han, Nam-Gyu;Shin, Young-Kyu
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.65-70
    • /
    • 2012
  • Carboxy-guns are used for rapid and precise injection of $CO_2$ gas to the target skin area using external power source. In the design of carboxy-gun, the most important thing is how to precisely control injection volume of $CO_2$ gas. This paper deals with the control scheme of injection volume of carboxy-gun using solenoid valve. First the amount of volume that passes through the solenoid valve under on-off time ratio control is estimated based on the assumption of compressible gas flow. The flow rate of gas is experimentally measured under the varying pressure of the gas reservoir. Two results showed good correlation to each other, thus demonstrating the validity of the volume control strategy.

  • PDF

Comparative Part Load Performance Analysis of Gas Turbine Power Generation Systems Considering Exhaust Heat Utilization (배열 이용도를 고려한 가스터빈 발전시스템의 부분부하 성능 비교분석)

  • Kim, T.S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.28-35
    • /
    • 2003
  • This paper presents analysis results for the effect of power control strategies on the part load performance of gas turbine based power generation systems utilizing exhaust heat of the gas turbine such as combined cycle power plants and regenerative gas turbines. For the combined cycle, part load efficiency variations were compared among different single shaft gas turbines representing various technology levels. Power control strategies considered were fuel only control and IGV control. It has been observed that gas turbines with higher design performances exhibit superior part load performances. Improvement of part load efficiency of the combined cycle by adopting air flow modulation was analyzed and it was concluded that since the average combined cycle performance is affected by the range of IGV control as well as its temperature control principle, a control strategy appropriate for the load characteristics of the individual plant should be adopted. For the regenerative gas turbine, it is likewise concluded that maintaining exhaust temperature as high as possible by air flow rate modulation is required to increase part load efficiency.

Flow Control of a Centralized Cooling Plant for Energy Saving (중앙식 냉방 플랜트의 유량제어를 통한 에너지 절감에 관한 연구)

  • Lee, Jeong Nam;Kim, Young Il;Chung, Kwang Seop
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.48-54
    • /
    • 2015
  • In a centralized cooling plant, precise mechanical design and control strategy are required for peak and partial cooling load management. Otherwise, it will lead to low efficiency of cooling system and energy loss due to low partial load efficiency. The purpose of this paper is to enhance energy performance of the centralized cooling plant by controlling flow system in an industrial building using measured data and energy performance simulation program. The simulation results show that the proposed flow control can cut down annual electric power consumption by about 17% compared with the conventional cooling system.

Ramp Metering under Exogenous Disturbance using Discrete-Time Sliding Mode Control (이산 슬라이딩모드 제어를 이용한 램프 미터링 제어)

  • Jin, Xin;Chwa, Dongkyoung;Hong, Young-Dae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2046-2052
    • /
    • 2016
  • Ramp metering is one of the most efficient and widely used control methods for an intelligent transportation management system on a freeway. Its objective is to control and upgrade freeway traffic by regulating the number of vehicles entering the freeway entrance ramp, in such a way that not only the alleviation of the congestion but also the smoothing of the traffic flow around the desired density level can be achieved for the maintenance of the maximum mainline throughput. When the cycle of the signal detection is larger than that of the system process, the density tracking problem needs to be considered in the form of the discrete-time system. Therefore, a discrete-time sliding mode control method is proposed for the ramp metering problem in the presence of both input constraint in the on-ramp and exogenous disturbance in the off-ramp considering the random behavior of the driver. Simulations were performed using a validated second-order macroscopic traffic flow model in Matlab environment and the simulation results indicate that proposed control method can achieve better performance than previously well-known ALINEA strategy in the sense that mainstream flow throughput is maximized and congestion is alleviated even in the presence of input constraint and exogenous disturbance.