• Title/Summary/Keyword: Flow contour

Search Result 197, Processing Time 0.044 seconds

Simulation of aquifer temperature variation in a groundwater source heat pump system with the effect of groundwater flow (지하수 유동 영향에 따른 지하수 이용 열펌프 시스템의 대수층 온도 변화 예측 모델링)

  • Shim, Byoung-Ohan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.701-704
    • /
    • 2005
  • Aquifer Thermal Energy Storage (ATES) can be a cost-effective and renewable geothermal energy source, depending on site-specific and thermohydraulic conditions. To design an effective ATES system having influenced by groundwater movement, understanding of thermo hydraulic processes is necessary. The heat transfer phenomena for an aquifer heat storage are simulated using FEFLOW with the scenario of heat pump operation with pumping and waste water reinjection in a two layered confined aquifer model. Temperature distribution of the aquifer model is generated, and hydraulic heads and temperature variations are monitored at the both wells during 365 days. The average groundwater velocities are determined with two hydraulic gradient sets according to boundary conditions, and the effect of groundwater flow are shown at the generated thermal distributions of three different depth slices. The generated temperature contour lines at the hydraulic gradient of 0.00 1 are shaped circular, and the center is moved less than 5m to the groundwater flow direction in 365 days simulation period. However at the hydraulic gradient of 0.01, the contour center of the temperature are moved to the end of boundary at each slice and the largest movement is at bottom slice. By the analysis of thermal interference data between two wells the efficiency of the heat pump system model is validated, and the variation of heads is monitored at injection, pumping and no operation mode.

  • PDF

A Study on the Heat Tranfer Enhancement of Heat Exchangers with Corrugated Wall (주름진 판형 열교환기의 성능향상에 관한 연구)

  • Oh Yunyoung;Yoo Seongyeon;Ko Sungho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.115-118
    • /
    • 2002
  • The present study deals with CFD analysis of a plastic heat exchanger with corrugated wall. This exchanger has sinusoidal corrugations, and the flow through the exchanger is three dimensional. In addition, CFX-5.4, a commercial code utilizing unstructured mesh, was used as a computational method for solving RANS(Reynolds-Averaged Navier-Stokes) equations, and the applied turbulence model is $k-{\varepsilon}$ model. The factors to affect the efficiency of a plastic heat exchanger are heat conductivity, flow characteristics and so on. For those two factors, heat conductivity is fixed by the wall material. Therefore, the How along the corrugation affects the efficiency more, provided the same material. In conclusion, the heat transfer enhancement of a plastic heat exchanger with corrugated wall can be recognized from the flow characteristics such as velocity streamline, local heat transfer coefficient, velocity contour, and pressure contour. To confirm the results, both of the measured and the computational data for pressure loss were compared with each other, and they were identical.

  • PDF

Forces induced by flows past two nearby circular cylinders (두 개의 원형 실린더에 작용하는 유체력)

  • Lee, Kyong-Jun;Yang, Kyung-Soo;Yoon, Dong-Hyeog
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2845-2850
    • /
    • 2007
  • Flow-induced forces on two identical nearby circular cylinders immersed in the cross flow at Re =100 were numerically studied. We consider all possible arrangements of the two circular cylinders in terms of the distance between the two cylinders and the inclination angle with respect to the direction of the main flow. It turns out that significant changes in the characteristics of flow-induced forces are noticed depending on how the two circular cylinders are positioned, resulting in quantitative changes of force coefficients on both cylinders. Collecting all the numerical results obtained, we propose a contour diagram for drag coefficient and lift coefficient for each of the two cylinders. The perfect geometrical symmetry implied in the flow configuration allows one to use those diagrams to estimate flow-induced forces on two identical circular cylinders arbitrarily positioned in physical space with respect to the main flow direction.

  • PDF

Forces Induced by Flows Past Two Nearby Circular Cylinders (두 개의 원형 실린더에 작용하는 유체력)

  • Lee, Kyong-Jun;Yoon, Dong-Hyeog;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.754-763
    • /
    • 2007
  • Flow-induced forces on two identical nearby circular cylinders immersed in the cross flow at Re=100 were numerically studied. We consider all possible arrangements of the two circular cylinders in terms of the distance between the two cylinders and the inclination angle with respect to the direction of the main flow. It turns out that significant changes in the characteristics of flow-induced forces are noticed depending on how the two circular cylinders are positioned, resulting in quantitative changes of force coefficients on both cylinders. Collecting all the numerical results obtained, we propose a contour diagram for drag coefficient and lift coefficient for each of the two cylinders. The perfect geometrical symmetry implied in the flow configuration allows one to use those diagrams to estimate flow-induced forces on two identical circular cylinders arbitrarily positioned in physical space with respect to the main flow direction.

Occlusion Processing in Simulation using Improved Object Contour Extraction Algorithm by Neighboring edge Search and MER (이웃 에지 탐색에 의한 개선된 객체 윤곽선 추출 알고리즘과 MER을 이용한 모의훈련에서의 폐색처리)

  • Cha, Jeong-Hee;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.206-211
    • /
    • 2008
  • Trainee can enhance his perception of and interaction with the real world by displayed virtual objects in simulation using image processing technology. Therefore, it is essential for realistic simulation to determine the occlusion areas of the virtual object produces after registering real image and virtual object exactly. In this paper, we proposed the new method to solve occlusions which happens during virtual target moves according to the simulated route on real image using improved object contour extraction by neighboring edge search and picking algorithm. After we acquire the detailed contour of complex objects by proposed contour extraction algorithm, we extract the three dimensional information of the position happening occlusion by using MER for performance improvement. In the experiment, we compared proposed method with existed method and preyed the effectiveness in the environment which a partial occlusions happens.

Analyses of Computation Time on Snakes and Gradient Vector Flow

  • Kwak, Young-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.2
    • /
    • pp.439-445
    • /
    • 2007
  • GVF can solve two difficulties with Snakes that are on setting initial contour and have a hard time processing into boundary concavities. But GVF takes much longer computation time than the existing Snakes because of their edge map and partial derivatives. Therefore this paper analyzed the computation time between GVF and Snakes. As a simulation result, both algorithms took almost similar computation time in simple image. In real images, GVF took about two times computation than Snakes.

  • PDF

Numerical Analysis of Turbulent Flows in the Scroll Volute of Centrifugal Compressor (벌류트 압축기내의 난류유동 수치해석)

  • Kwag, Seung-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.681-686
    • /
    • 2007
  • The flow analysis was made by applying the turbulent models in the scroll volume of centrifugal compressor. The $k-{\varepsilon}.\;k-{\omega}$, Spalart-Allmaras and reynolds stress models are used in which the hybrid grid is applied for the simulation. The velocity vector the Pressure contour. the change of residual along the iteration number. and the dynamic head are simulated by solving the Navier-Stokes equations for the comparison of four example cases.

Reynolds-number Effect on the Flow Past Two Nearby Circular Cylinders (두 개의 원형 실린더를 지나는 유동의 레이놀즈 수 효과)

  • Lee, Kyong-Jun;Choi, Choon-Bum;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.30-38
    • /
    • 2008
  • As a follow-up of our previous studies on flow-induced forces on two identical nearby circular cylinders immersed in the cross flow at Re=100 and flow patterns past them,$^{(1,2)}$ we present Reynolds-number effects on the forces and patterns by further computing flows with Re=40, 50, 160. We consider all possible arrangements of the two circular cylinders in terms of the distance between the two cylinders and the angle inclined with respect to the main flow direction. Collecting all the numerical results obtained, we propose contour diagrams for mean force coefficients and their rms of fluctuation as well as for flow patterns and Strouhal number for each Re. These diagrams shed light on a comprehensive picture on how the wake interaction between the two cylinders alters depending on Re.

Large Eddy Simulation of Turbulent Pipe Flow (LES에 의한 원관 내 난류의 유동 해석)

  • 고상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.437-446
    • /
    • 2003
  • A large eddy simulation (LES) is performed for turbulent pipe flow. The simulation code is constructed by using a general coordinate system based on the physical contravariant velocity components. The effects of grid fineness which can be well prediction of turbulent behavior in near wall region is investigated. The subgrid scale turbulent models are applied and validated emphasis is placed on the flow details of turbulent pipe flow The calculated Reynolds number is 360 based on the wall shear velocity and the inlet pipe diameter. The predicted turbulent statistics are evaluated by comparing with the DNS data of turbulent pipe flow Performed by Eggels et al. The agreement of LES with DNS data is shown to be satisfactory. The proper grid fineness of the well prediction of turbulent pipe flow is suggested and the turbulent behavior is analyzed by depict the contour plot of fluctuating velocity components.

Efficiency Evaluation of Contour Generation from Airborne LiDAR Data (LiDAR 데이터를 이용한 등고선 제작의 효율성 평가)

  • Wie, Gwang-Jae;Lee, Im-Pyeong;Kang, In-Gu;Cho, Jae-Myoung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.2 s.40
    • /
    • pp.59-66
    • /
    • 2007
  • The digital working environment and its related technology have been rapidly expanding. In the surveying field, we have changed from using optical film cameras and plotters to digital cameras, multi sensors like GPS/INS etc,. The old analog work flow is replaced by a new digital work flow. Accurate data of the land is used in various fields, efficient utilization and management of land, urban planning, disaster and environment management. It is important because it is an essential infrastructure. For this study, LiDAR surveying was used to get points clouds in the study area. It has a high vegetation penetrating advantage and we used a digital process from planning to the final products. Contour lines were made from LiDAR data and compared with national digital base maps (scale 1/1,000 and 1/5,000). As a result, the accuracy and the economical efficiency were evaluated. The accuracy of LiDAR contour data was average $0.089m{\pm}0.062\;m$ and showed high ground detail in complex areas. Compared with 1/1,000 scale contour line production when surveying an area over $100\;km^2$, approximately 48% of the cost was reduced. Therefore we prepose LiDAR surveying as an alternative to modify and update national base maps.

  • PDF