• Title/Summary/Keyword: Flow contour

Search Result 197, Processing Time 0.026 seconds

2-D Analysis of the Low Flow Variation Around the Bridge Pier (교각 주변의 저수류 (低水流) 흐름 변화에 대한 2차원 분석)

  • Yeon, In-Sung;Lee, Jai-Kyung;Yeon, Gyu-Bang
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.91-97
    • /
    • 2009
  • The flow is changed by the structure which goes across the river. The structure with debris causes high water level and overflow. The changed flow, which caused by pier and stream characteristics like velocity and slope, was analysed by 2D model. After rainfall, the influences of increased discharge were evaluated. Velocity was simulated in the channel by SMS (Surface water Modeling System) using RMA2, and high velocity values were found in the steep and narrow reach. Highest velocity value around piers was showed in the middle of space between two piers. The increased discharge due to rainfall increases velocity and changes flow contour considerably.

A Study on Steady State Performance of Variable Thrust Nozzle by Cold-Flow Test (공압시험을 이용한 추력가변 노즐의 정상상태 성능 연구)

  • Kim, Joung-Keun;Lee, Ji-Hyung;Oh, Jong-Yun;Chang, Hong-Been
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.8-14
    • /
    • 2008
  • Solid Rocket Motor(SRM) has advantages such as - high specific impulse, operational safety and simplicity in design and manufacturing process but thrust magnitude can't be controlled. For studying of pintle nozzle that can control the thrust magnitude of SRM, cold flow test and numerical analysis about needle type pintle shape were performed and results were presented in this paper. As the results of this study, pintle tip's shape and nozzle contour were important design parameters because thrust performance and variable thrust range of pintle nozzle depend on them. Especially, the thrust of needle typed pintle nozzle adopted in this test was predicted 13% higher than normal nozzle without pintle.

Characteristics of Near Wake Behind a Circular Cylinder with Serrated Fins (III) - Mechanism of Velocity Recovery - (톱니형 휜이 부착된 원주의 근접후류특성 연구 (III) - 속도회복 메카니즘에 관하여 -)

  • Ryu, Byong-Nam;Kim, Kyung-Chun;Boo, Jung-Sook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.347-356
    • /
    • 2003
  • The characteristics of near wakes of circular cylinders with serrated fins are investigated experimentally using a hot-wire anemometer for various freestream velocities. Near wake structures of the fin tubes are observed using a phase average technique. With increasing fin height and decreasing fin pitch. oscillation of streamwise velocity increases. It file oscillation of lateral velocity decreases. The time averaged V-component velocity distribution of the finned tube is contrary to that of the circular cylinder due to the different strength of entrainment flow. This strength is affected by the distance of (equation omitted) = 1.0 contour lines. (equation omitted) = 1.0 contour line approaches to the wake center line when the fin density is increased. When the distance between (equation omitted) = 1.0 contour lines comes close the shear force should be increased and the flow toward the wake center line can be more strengthened because of the shear force. Factors related to the velocity recovery in the near wake of the finned tube are attributed to tile turbulent intensity, the boundary layer thickness. the position and strength of entrainment process.

Aerodynamic Optimal Design of Nozzle Contour for Supersonic Exit Mach Number

  • Mon, Khin Oo;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.335-338
    • /
    • 2010
  • A recent study for tracing the profiles of supersonic axisymmetric Minimum Length Nozzle with uniform and parallel flow at the exit section, the stagnation temperature is taken into account. The aim of this work is to add optimization algorithm to the supersonic nozzle design in order to get the optimum nozzle shape. The comparisons of the nozzle contours based on the method of characteristics are presented. The specific heats and their ratio vary with the stagnation temperature when this temperature of a perfect gas increases. An application is made for air in a supersonic nozzle.

  • PDF

A study on internal flow field of supersonic nozzle by needle type pintle position (Needle형 Pintle의 위치에 따른 초음속 노즐 내부 유동장 연구)

  • Lee, Ji-Hyung;Kim, Jung-Keun;Chang, Hong-Been
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.269-272
    • /
    • 2008
  • Internal flow field of supersonic nozzle with pintle, which control thrust of solid rocket motor, is very complicated by pintle tip shape and contour of nozzle. For studying of pintle nozzle performance by effects of internal flow field variation with pintle position, cold flow test and numerical analysis about needle type pintle shape were performed and results were presented in this paper. As the results of this study, three types of internal shocks exists in the pintle nozzle and oblique shock is oscillated by pintle position

  • PDF

DIRECT NUMERICAL SIMULATION OF IMMISCIBLE GAS BUBBLE DISPLACEMENT IN 2D CHANNEL (2차원 관내 유동에서 불활성 기체 제거과정의 직접 수치 해석)

  • Shin, S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.41-46
    • /
    • 2007
  • Dynamic behavior of immiscible gas bubble attached to the wall in channel flow plays very important role in many engineering applications. Special attention has been paid to micro direct methanol fuel cell(${\mu}$DMFC) where surface tension becomes dominant factor with minor gravitational effect due to its reduced size. Therefore, displacement of $CO_2$ bubble generating on a cathode side in ${\mu}$DMFC can be very difficult and efficient removal of $CO_2$ bubbles will affect the overall machine performance considerably. We have focused our efforts on studying the dynamic behavior of immiscible bubble attached to the one side of the wall on 2D rectangular channel subject to external shear flow. We used Level Contour Reconstruction Method(LCRM) which is the simplified version of front tracking method to track the bubble interface motion. Effects of Reynolds number, Weber number, advancing/receding contact angle and property ratio on bubble detachment characteristic has been numerically identified.

Thermographic Detection of Surface Crack Using Holomorphic Function of Thermal Field

  • Kim, No-Hyu;Lim, Zong-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.296-301
    • /
    • 2012
  • This paper describes an analytic method for infrared thermography to detect surface cracks in thin plates. Traditional thermographic method uses the spatial contrast of a thermal field, which is often corrupted by noise in the experiment induced mainly by emissivity variations of target surfaces. This study developed a robust analytic approach to crack detection for thermography using the holomorphic function of a temperature field in thin plate under steady-state thermal conditions. The holomorphic function of a simple temperature field was derived for 2-D heat flow in the plate from Cauchy-Riemann conditions, and applied to define a contour integral that varies depending on the existence and strength of singularity in the domain of integration. It was found that the contour integral at each point of thermal image reduced the noise and temperature variation due to heat conduction, so that it provided a clearer image of the singularity such as cracks.

The prediction of ventilated supercavitation shapes according to the angle of attack of a circular cavitator (원형 캐비테이터의 받음각에 따른 환기초공동 형상 예측 연구)

  • Yi, Jong-Ju;Kim, Min-Jae;Paik, Bu-Geun;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.22-30
    • /
    • 2021
  • Ventilated cavity shapes by varying angle of attack of a circular cavitator were predicted based on Logvinovich's Independence Principle in order to verify the cavity shape prediction method. The prediction results were compared with model experiments conducted in the high-speed cavitation tunnel. In the prediction of the cavity centerline, the movement of the cavity centerline due to the effect of gravity and cavitator's angle of attack were well predicted. In the prediction of the cavity contour, it was found that the cavity edge prediction error increased as the angle of attack increased. The error of the upper cavity contour was small at the positive angle of attack, and the error of the lower cavity contour was small at the negative angle of attack.

Assessment of the Counter-Flow Thrust Vector Control in a Three-Dimensional Rectangular Nozzle (3차원 직사각형 노즐에서 역유동 추력벡터 제어 평가)

  • Wu, Kexin;Kim, Tae Ho;Kochupulickal, James Jintu;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.34-46
    • /
    • 2020
  • Computational assessment of gas-dynamic characteristics is explored for a three-dimensional counter-flow thrust vector control system in a rectangular supersonic nozzle. This convergent-divergent nozzle is designed by Method of Characteristics and its design Mach number is specially set as 2.5. Performance variations of the counter-flow vector system are illustrated by varying the gap height of the secondary flow duct. Key parameters are quantitatively analyzed, such as static pressure distribution along the centerline of the upper suction collar, deflection angle, secondary mass flow ratio, and resultant thrust coefficient. Additionally, the streamline on the symmetry plane, three-dimensional iso-Mach number surface contour, and three-dimensional turbulent kinetic energy contour are presented to reveal overall flow-field characteristics in detail.

Flow past a Square Cylinder with an Angle of Attack (기울어진 정방형 실린더에 작용하는 유체력)

  • Yoon, Dong-Hyeog;Yang, Kyung-Soo;Choi, Choon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2754-2758
    • /
    • 2008
  • Numerical investigation has been carried out for laminar flow ($Re{\leq}150$) past a square cylinder in cross freestream with an angle of attack. This study would be the first step towards understanding flow-induced forces on cylindrical structures under a strong gust of wind from the viewpoint of wind hazards. Collecting all the numerical results obtained, we propose contour diagrams of drag/lift coefficients and Strouhal number (St) on an Re-Angle plane.

  • PDF