• Title/Summary/Keyword: Flow cone

Search Result 289, Processing Time 0.027 seconds

Mineral Admixture Factors Affecting Rheological Properties of Cement Paste (시멘트 페이스트의 레올로지 특성에 미치는 혼화재 변수의 영향)

  • Heo Young-Sun;Hwang Yin-Sung;Shin Hyun-Sup;Yoon Seob;Lee Gun-Cheol;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.57-61
    • /
    • 2005
  • Cement paste is originally the basic material and crucial factor consisting concrete. This study investigates the relationship between flow apparatuses, which are ring flow(R-F), flow cone(F-C) and mini slump(M-S), in order to estimate the fluidity of cement Paste. For quantitatively evaluating the measured data this study also investigated the calibration of the rheology consistent, such as yield value and plastic viscosity, of cement paste using viscometer For this purpose the present work discussed the influence of 3 type of ordinary portland cement with different companies, affecting the fluidity of cement paste. and it also demonstrated the influence of the various kinds of mineral admixtures, such as fly ash(FA), blast furnace slag(BS) and silica fume(SF) and that of incorporating ratio. The author concluded that using R-F apparatus is the most effective flow test method of cement paste and it is exactly proportional to other apparatus' rheological properties.

  • PDF

The Effect of Tip Clearance Height on the Three-Dimensional Flow and Aerodynamic Loss in the Wake Region of a High-Turning Turbine Rotor Cascade (끝틈새가 선회각이 큰 터빈 동익 익렬 후류영역에서의 3차원유동 및 압력손실에 미치는 영향)

  • Kwon, Hyun-Goo;Park, Jin-Jae;Lee, Sang-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.5 s.26
    • /
    • pp.36-42
    • /
    • 2004
  • The effect of tip clearance height on the three-dimensional flow and aerodynamic loss in the wake region of a high-turning turbine rotor cascade has been investigated with a miniature cone-type five-hole probe. Distributions of velocity magnitude, secondary velocity vectors, and total-pressure loss coefficient are presented for three tip gap-to-span ratios of h/s = 0.0, 0.5 and 1.0 percent. The result shows that with the increment of h/s, tip leakage vortex tends to be intensified and aerodynamic loss due to the leakage vortex is increased as well. In the case of h/s = 1.0 percent, aerodynamic loss in the tip-leakage flow region is found dominant in comparison with that in the passage vortex region. With increasing h/s, mass-averaged secondary loss coefficient has a greater portion in the mass-averaged total-pressure loss coefficient.

Effects of resveratrol on laminar shear stress-induced mitochondrial biogenesis in human vascular endothelial cells

  • Kim, Ji-Seok;Park, Joon-Young
    • Korean Journal of Exercise Nutrition
    • /
    • v.23 no.1
    • /
    • pp.7-12
    • /
    • 2019
  • [Purpose] The purpose of the study was to determine the combined effects of resveratrol supplementation with high-flow LSS on mitochondrial biogenesis in human vascular endothelial cells. [Methods] Cultured human umbilical vein endothelial cells were treated with 20 μM of RSV. For the shear experiments, cells grown to a >90% confluence were exposed to physiological levels of LSS (5 to 20 dyne/cm2) for 12 to 36 hours using a cone and plate shear apparatus. Gene expressions were analyzed by western blotting. [Results] Depletion of mitochondrial integrity was directly associated with increase in endothelial activation/dysfunction. The expressions of mitochondrial biogenesis regulator genes, such as SIRT1, PGC-1α, and TFAM, and the mitochondrial contents were significantly increased after treatment with both resveratrol and high-flow LSS for 12 hours. However, supplementation of resveratrol to high-flow LSS for a prolonged duration had no synergistic effect on the levels of mitochondrial biogenesis regulator gene expressions and mitochondrial content compared to the LSS treatment alone. [Conclusion] The present study demonstrated that the supplementation of resveratrol to high-flow LSS has no synergistic effects on enhancing mitochondrial integrity in human vascular endothelial cells.

Estimation of Air Flow Rate in Automotive Ventilated Seat (자동차 통풍 시트의 유량 평가)

  • Lee, Hyun-Hee;Kim, Tae-Kyung;Lee, Kwangju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.34-40
    • /
    • 2016
  • In ventilated seats for cars, air flow is generated by a fan and passed through a foam pad, foam filter, and seat cover. There is a significant loss of air flow in this process, and it is not easy to analyze the amount delivered to the driver. Another difficulty is the geometric complexity of the air flow passage inside the seats. In this paper, the air flow through a foam pad was analyzed. Proper modeling of the bumps in the ventilation mat was found to be important in the analysis. Air flow is lost when it passes through the porous pad foam, which was measured and used to correct the analysis results. The corrected analysis results were in a good agreement with the experimental results. The amount of air flow delivered to a driver was measured using an airflow cone. Only 35.7% of the air flow from the fan was delivered.

Fundamental Study on Development of Sealants used for WIM Sensor Installation (WIM 센서 설치에 적합한 실런트 개발을 위한 기초적인 연구)

  • Lim, Chisoo;Kim, Du-Byung;Kim, Yongjoo;Lee, Kanghun;Lee, Jaejun
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.17-24
    • /
    • 2017
  • PURPOSES : This study aims to develop a sealant for use in the installation of Weigh-In-Motion (WIM) sensor for asphalt concrete or cement concrete pavements. METHODS : In order to investigate the properties of various sealants that were mixed with latex and carbon fiber, various test methods were adopted, such as bituminous bond strength test, softening point test, and cone penetration test. To evaluate moisture susceptibility, the BBS test was conducted under moist condition. The bond strength ratio (BSR) was calculated based on tensile strength ratio method. RESULTS : The sealant's properties significantly varied according to the amount of latex or carbon fiber. The usage of latex marginally enhanced the cone penetration test result, notwithstanding reduced asphalt content. This implies that the sealant will be proper cold temperature reason. Moreover, the addition of latex and carbon fiber evidently increased the softening point. This indicates that the tendency of the material to flow at elevated temperatures is encountered during service. With the addition of latex and carbon fiber, the moisture susceptibility measured with BSR improved marginally, while the bond strength under dry condition decreased marginally. Sealant F displays the highest bond strength and BSR under limited test conditions. CONCLUSIONS : According to the proportion of latex and carbon fiber mixed, properties of sealant, such as softening point, cone penetration, and BSR varied marginally. This indicates that the sealant has to be applied considering the environmental condition, to improve service life.

Combustion Characteristics of a Double-cone Partial Premixed Nozzle with Various Fuel hole Patterns (이중 콘형 부분 예혼합 GT 노즐의 연료 분사구 형상 변화에 대한 연소특성)

  • Kim, Han Seok;Cho, Ju Hyeong;Kim, Min Kuk;Hwang, Jeongjae;Lee, Won June
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.25-31
    • /
    • 2020
  • Experimental investigations were conducted to examine the combustion characteristics of a swirl-stabilized double cone premixed burner nozzle used for industrial gas turbines for power generation. Several variants with different fuel injection patterns are tested to compare the combustion characteristics such as NOx and CO emissions, stability, and wall temperature distributions. Main results show that NOx emissions and stability are decreased either when the fuel hole diameter is decreased with the same number of fuel holes, or when the number of fuel holes is reduced with the same total area of fuel holes, both of which are due to a higher penetration of fuel into the air stream. Not only is NOx reduced but also stability is enhanced when the fuel hole diameter varies in an alternating manner with the same total area of fuel holes, showing that NOx reduction is due to a higher penetration of mean fuel injection path while stability enhancement is due to a lowered penetration of minimum fuel injection path.

Correlation between gray values of cone-beam computed tomograms and Hounsfield units of computed tomograms: A systematic review and meta-analysis

  • Selvaraj, Abirami;Jain, Ravindra Kumar;Nagi, Ravleen;Balasubramaniam, Arthi
    • Imaging Science in Dentistry
    • /
    • v.52 no.2
    • /
    • pp.133-140
    • /
    • 2022
  • Purpose: The aim of this review was to systematically analyze the available literature on the correlation between the gray values (GVs) of cone-beam computed tomography (CBCT) and the Hounsfield units (HUs) of computed tomography (CT) for assessing bone mineral density. Materials and Methods: A literature search was carried out in PubMed, Cochrane Library, Google Scholar, Scopus, and LILACS for studies published through September 2021. In vitro, in vivo, and animal studies that analyzed the correlations GVs of CBCT and HUs of CT were included in this review. The review was prepared according to the PRISMA checklist for systematic reviews, and the risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies tool. A quantitative analysis was performed using a fixed-effects model. Results: The literature search identified a total of 5,955 studies, of which 14 studies were included for the qualitative analysis and 2 studies for the quantitative analysis. A positive correlation was observed between the GVs of CBCT and HUs of CT. Out of the 14 studies, 100% had low risks of bias for the domains of patient selection, index test, and reference standards, while 95% of studies had a low risk of bias for the domain of flow and timing. The fixed-effects meta-analysis performed for Pearson correlation coefficients between CBCT and CT showed a moderate positive correlation (r=0.669; 95% CI, 0.388 to 0.836; P<0.05). Conclusion: The available evidence showed a positive correlation between the GVs of CBCT and HUs of CT.

Spray Characteristics of Closed-type Swirl Injectors with Varying Swirl Chamber Geometry (Closed-type 스월 인젝터의 스월 챔버 형상에 따른 분무특성 연구)

  • Chung, Yunjae;Jeong, Seokkyu;Oh, Sukil;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.8-14
    • /
    • 2015
  • This study has been done as a preliminary work in the process of confirming the modeling and calculation results on the dynamic characteristics of closed-type swirl injector which were performed by Ismailov et al. in Purdue university. Closed-type swirl injectors with replaceable swirl chamber parts were designed and manufactured. The steady state spray characteristics of closed-type swirl injector with varying swirl chamber length and diameter were verified. Mass flow rate was measured with a mass flow meter installed in front of the injector, and liquid film thickness was measured by Lefebvre's method with electrodes installed at the orifice of the injector. Variation of spray cone angle and break-up length were investigated from the spray images captured under different manifold pressure conditions.

The Effect of Reynolds Number on the Three-Dimensional Flow Measurements with a Two-Stage Cone-Type Five-Hole Probe in a Non-Nulling Mode (Reynolds 수가 2단 원추형 5공프로브를 이용한 3차원 유동 측정에 미치는 영향 - 저속 유동장에서의 보정 결과 -)

  • Lee, Sang-U;Jeon, Sang-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.27-38
    • /
    • 2002
  • The effects of Reynolds number on the non-nulling calibrations of a cone-type ave-type probe in low-speed flows have been investigated at Reynolds numbers of 2.04$\times$10$^3$, 4.09$\times$10$^3$and 6.13$\times$10$^3$. The calibration is conducted at the pitch and yaw angles in ranges between -35 degrees and 35 degrees with an angle interval of 5 degrees. In addition to the calibration coefficients, reduced pitch and yaw angles, static and total pressures, and velocity magnitude are obtained through a typical non-nulling reduction procedure. The result shows that each calibration coefficient, in general, is a function of both the pitch and yaw angles, so that the pre-existing calibration data in a nulling mode are not enough in accounting far the full non-nulling calibration characteristics. Due to interference of the probe stem, the calibration coefficient are more sensitive to Reynolds number at positive pitch angles than at negative ones. The calibration data reduced in this study may serve as a guide line in the estimation of uncertainty intervals resulted from the Reynolds number effects at low Reynolds numbers.

Measurement of Size Distributions of Submicron Electrosprays Using a Freezing Method and an Image Processing Technique (냉각법 및 영상 처리기법을 이용한 서브마이크론 정전분무 액적의 크기분포 측정)

  • Ku, Bon-Ki;Kim, Sang-Soo;Kim, Yu-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.100-106
    • /
    • 2001
  • The size distributions of electrospray droplets from the Taylor cone in cone-jet mode are directly measured by using a freezing method and a transmission electron microscope (TEM) image processing technique. These results are compared with the data obtained by an aerodynamic size spectrometer (TSI Aerosizer DSP). The use of glycerol seeded with NaI and a freezing method make it possible to sample droplets with their original sizes preserved. Since pictures of droplets are taken with TEM with very low vapor pressure of the solution, evaporation is suppressed by freezing. For liquid flow rates below 1 nl/sec, the measured droplet diameters by the TEM image processing technique and the aerosizer are in the range of 0.25 to $0.32{\mu}m$ and 0.30 to $0.40{\mu}m$, respectively. Comparing the TEM data with the aerosizer measurements, it has been revealed that the TEM image processing technique can afford more accurate values of droplet size distributions in the submicron range of 0.1 to $0.4{\mu}m$.

  • PDF