• Title/Summary/Keyword: Flow condensation

Search Result 395, Processing Time 0.023 seconds

Assessment of the level and identification of airborne molds by the type of water damage in housing in Korea (국내 주택에서 물 피해 유형에 따른 부유곰팡이 농도 수준 평가 및 동정 분석)

  • Lee, Ju Yeong;Hwang, Eun Seol;Lee, Jeong-Sub;Kwon, Myunghee;Chung, Hyen Mi;Seo, SungChul
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.355-361
    • /
    • 2018
  • Mold grows more easily when humidity is higher in indoor spaces, and as such is found more often on wetted areas in housing such as walls, toilets, kitchens, and poorly managed spaces. However, there have been few studies that have specifically assessed the level of mold in the indoor spaces of water-damaged housing in the Republic of Korea. We investigated the levels of airborne mold according to the characteristics of water damage types and explored the correlation between the distribution of mold genera and the characteristics of households. Samplings were performed from January 2016 to June 2018 in 97 housing units with water leakage or condensation, or a history of flooding, and in 61 general housing units in the metropolitan and Busan area, respectively. Airborne mold was collected on MEA (Malt extract agar) at flow rate of 100 L/min for 1 min. After collection, the samples were incubated at $25^{\circ}C$ for 120 hours. The cultured samples were counted and corrected using a positive hole conversion table. The samples were then analyzed by single colony culture, DNA extraction, gene amplification, and sequencing. By type of housing, concentrations of airborne mold were highest in flooded housing, followed by water-leaked or highly condensed housings, and then general housing. In more than 50% of water-damaged housing, the level of airborne mold exceeded the guideline of Korea's Ministry of Environment ($500CFU/m^3$). Of particular concern was the fact that the I/O ratio of water-damaged housing was greater than 1, which could indicate that mold damage may occur indoors. The distribution patterns of the fungal species were as follows: Penicillium spp., Cladosporium spp. (14%), Aspergillus spp. (13%) and Alternaria spp. (3%), but significant differences of their levels in indoor spaces were not found. Our findings indicate that high levels of mold damage were found in housing with water damage, and Aspergillus flavus and Penicillium brevicompactum were more dominant in housing with high water activity. Comprehensive management of flooded or water-damaged housing is necessary to reduce fungal exposure.

Radiation-induced Apoptosis is Differentially Modulated by PTK Inhibitors in K562 Cells (K562 백혈병 세포주에서 방사선에 의해 유도되는 Apoptosis에 미치는 PTK Inhibitors의 영향)

  • Lee Hyung Sik;Moon Chang Woo;Hur Won Joo;Jeong Su Jin;Jeong Min Ho;Lee Jeong Hyeon;Lim Young kin;Park Heon Joo
    • Radiation Oncology Journal
    • /
    • v.18 no.1
    • /
    • pp.51-58
    • /
    • 2000
  • Purpose :The effect of PTK inhibitors (herbimycin A and genistein) on the induction of radiation-induced apoptosis in Ph-positive KS62 leukemia cell line was investigated. Materials and Methods :K562 cells in exponential growth phase were irradiated with a linear accelerator at room temperature. For 6 MV X-ray irradiation and drug treatment, cultures were initiated at 2×106 cells/mL. The cells were irradiated with 10 Gy. Stock solutions of herbimycin A and genistein were prepared in dimethyl sulphoxide (DMSO). After incubation at 37$^{\circ}C$ for 0$\~$48 h, the extent of apoptosis was determined using agarose gel electrophoresis and TUNEL assay. The progression of cells through the cell cycle after irradiation and drug treatment was also determined with flow cytometry. Western blot analysis was used to monitor bel-2, bel-X$_{L}$ and bax protein levels. Results :Treatment with 10 Gy X-irradiation did not result in the induction of apoptosis. The HMA alone (500 nM) also failed to induce apoptosis. By contrast, incubation of K562 cells with HMA after irradiation resulted in a substantial induction of nuclear condensation and fragmentation by agarose gel electro-phoresis and TUNEL assay. Genistein failed to enhance the ability of X-irradiation to induce DNA fragmentation. Enhancement of apoptosis by HMA was not attributable to downregulation of the bel-2 or bel-X$_{L}$ anti-apoptotic proteins. When the cells were irradiated and maintained with HMA, the percentage of cells in G2/M phase decreased to 30$\~$40$\%$ at 48 h. On the other hand, cells exposed to 10 Gy X-irradiation alone or maintained with genistein did not show marked cell cycle redistribution. Conclusion : We have shown that nanomolar concentrations of the PTK inhibitor HMA synergize with X-irradiation in inducing the apoptosis in Ph (+) K562 leukemia cell line. While, genistein, a PTK inhibitor which is not selective for p210$^{bcr/abl}$ failed to enhance the radiation induced apoptosis in KS62 cells. It is unlikely that the ability of HMA to enhance apoptosis in K562 cells is attributable to bel-2 family. It is plausible that the relationship between cell cycle delays and cell death is essential for drug development based on molecular targeting designed to modify radiation-induced apoptosis.

  • PDF

Extract from Eucheuma cottonii Induces Apoptotic Cell Death on Human Osteosarcoma Saos-2 Cells via Caspase Cascade Apoptosis Pathway (Eucheuma cottonii 추출물에 의한 인체 골육종암 Saos-2 세포의 자가사멸 유도)

  • Kang, Chang-Won;Kang, Min-Jae;Kim, Kyong Rok;Kim, Nan-Hee;Seo, Yong Bae;Kang, Keon-Hee;Kim, Sang-Ho;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.147-154
    • /
    • 2016
  • Osteosarcoma (OS) is the most common and malignant bone tumors. Although many types of resection surgery and experimental agents were developed, median survival and clinical prognosis are poorly investigated. Recently, several researches have reported that Eucheuma cottonii has potent as protective effects of coal dust-induced lung damage via inhibition of malondialdehyde (MDA) and oxidative stress in bronchoalveolar lavage fluids (BALF). However, anti-cancer effects and specific molecular mechanism of extract from Eucheuma cottonii (EE) has not been clearly studied yet. This study evaluated that anti-cancer potential of EE in human osteosarcoma Saos-2 cells. EE indicated cytotoxicity on Saos-2 cells in a dose-dependent manner. Morphological degradation and nucleic condensation were also observed under the EE treatment. However, it did not significantly affect on non-cancerous kidney HEK-293 cells under the same concentration which is shown cytotoxicity on Saos-2 cells. The phosphorylation of Fas-Associated Death Domain (FADD) and expression of cleaved caspase-8, -7 and -3 were upregulated in a dose-dependent manner. In immunofluorescence staining, expression level of Fas and cleaved PARP were upregulated by EE treatment. Furthermore, treatment of EE induces upregulation of sub G1 phase by flow cytometry analysis. The results demonstrated that EE has a therapeutic potential against osteosarcoma via FADD mediated caspase cascade apoptosis signal pathway.

Anti-Cancer Effect of Ursolic Acid in Melanoma Cell A375SM and A375P (Ursolic acid의 악성 흑색종 세포주 A375SM과 A375P에서의 항암효능)

  • Woo, Joong-Seok;Kim, Na-Won;Lee, Jin-Gyu;Kim, Jae-Hyuk;Lim, Da-Young;Kang, Shin-Woo;Kim, Sung-Hyun;Yoo, Eun-Seon;Lee, Jae-Han;Han, So-Hee;Park, Young-Seok;Kim, Byeong-Soo;Kim, Sang-Ki;Park, Byung-Kwon;Jung, Ji-Youn
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.183-190
    • /
    • 2019
  • Ursolic acid is recognized for various effects such as anti-cancer, antioxidant, and anti-inflammatory activity. In this study, we confirmed the anti-cancer effect of ursolic acid on human melanoma cancer cells, A375SM and A375P. Survival rate of the melanoma cells was confirmed by MTT assay and the proliferation rate was confirmed by wound healing assay. The rate of apoptotic bodies was confirmed by DAPI staining, and apoptosis rate was confirmed by flow cytometry. The induction of apoptosis protein was examined by western blotting according to the concentration of ursolic acid in melanoma cells. The survival and proliferation rates of melanoma cells were decreased according to the treatment concentrations of ursolic acid. DAPI staining showed that chromosomal condensation of melanoma cells was increased with increasing concentrations of ursolic acid, and increased apoptosis rate of melanoma cells by ursolic acid was confirmed by flow cytometry. We also confirmed by western blotting that cleaved-PARP and Bax were increased and Bcl-2 was decreased at $12{\mu}M$ concentration of uricolic acid in melanoma cells. This study was carried out at low concentrations of ursolic acid, 0 to $20{\mu}M$, and analyzed 24 h after treatment. As a result of this study, it is thought that ursolic acid has the anti-cancer effect through the regulation of apoptosis-related proteins in melanoma cells A375SM and A375P.

Iron chelating agent, deferoxamine, induced apoptosis in Saos-2 osteosarcoma cancer cells (Saos-2 골육종 세포에서 iron chelating agent, deferoxamine에 의한 apoptosis 유도)

  • Park, Eun Hye;Lee, Hyo Jung;Lee, Soo Yeon;Kim, Sun Young;Yi, Ho Keun;Lee, Dae Yeol;Hwang, Pyoung Han
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.2
    • /
    • pp.213-219
    • /
    • 2009
  • Purpose:Iron is a critical nutritional element that is essential for a variety of important biological processes, including cell growth and differentiation, electron transfer reactions, and oxygen transport, activation, and detoxification. Iron is also required for neoplastic cell growth due to its catalytic effects on the formation of hydroxyl radicals, suppression of host defense cell activities, and promotion of cancer cell multiplication. Chronic transfusion-dependent patients receiving chemotherapy may have iron overload, which requires iron-chelating therapy. We performed this study to demonstrate whether the iron chelating agent deferoxamine induces apoptosis in Saos-2 osteosarcoma cells, and to investigate the underlying apoptotic mechanism. Methods:To analyze the apoptotic effects of an iron chelator, cultured Saos-2 cells were treated with deferoxamine. We analyzed cell survival by trypan blue and crystal violet analysis, apoptosis by nuclear condensation, DNA fragmentation, and cell cycle analysis, and the expression of apoptotic related proteins by Western immunoblot analysis. Results:Deferoxamine inhibited the growth of Saos-2 cell in a time- and dose-dependent manner. The major mechanism for growth inhibition with the deferoxamine treatment was by the induction of apoptosis, which was supported by nuclear staining, DNA fragmentation analysis, and flow cytometric analysis. Furthermore, bcl-2 expression decreased, while bax, caspase-3, caspase-9, and PARP expression increased in Saos-2 cells treated with deferoxamine. Conclusion:These results demonstrated that the iron chelating agent deferoxamine induced growth inhibition and mitochondrial-dependent apoptosis in osteosarcoma Saos-2 cells, suggesting that iron chelating agents used in controlling neoplastic cell fate can be potentially developed as an adjuvant agent enhancing the anti-tumor effect for the treatment of osteosarcoma.