• 제목/요약/키워드: Flow computation

검색결과 983건 처리시간 0.026초

A Numerical Study for the Three-Dimensional Fluid Flow Past Tube Banks and Comparison with PIV Experimental Data

  • Ha, Man-Yeong;Kim, Seung-Hyeon;Kim, Kyung-Chun;Son, Young-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2236-2249
    • /
    • 2004
  • The analysis for the three-dimensional fluid flow past tube banks arranged in equilateral-triangular form at Re$\_$max/=4,000 is carried out using a large eddy simulation technique. The governing equations for the mass and momentum conservation are discretized using the finite volume method. Parallel computational techniques using MPI (Message Passing Interface) are implemented in the present computer code. The computation time decreases linearly proportional to the number of used CPUs in the present parallel computation. We obtained the time-averaged streamwise and cross-streamwise velocities and turbulent intensities. The present numerical results are compared with the PIV experimental data and agree generally well with the experimental data.

차분 래티스볼츠만법에 Subgrid 난류모델의 적용 (Application of Subgrid Turbulence Model to the Finite Difference Lattice Boltzmann Method)

  • 강호근;안수환;김정환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권5호
    • /
    • pp.580-588
    • /
    • 2006
  • Two-dimensional turbulent flows past a square cylinder and cavity noise are simulated by the finite difference lattice Boltzmann method with subgrid turbulence model. The method, based on the standard Smagorinsky subgrid model and a single-time relaxation lattice Boltzmann method, incorporates the advantages of FDLBM for handling arbitrary boundaries. The results are compared with those by the experiments carried out by Noda & Nakayama and Lyn et al. Numerical results agree with the experimental ones. Besides, 2D computation of the cavity noise generated by flow over a cavity at a Mach number of 0.1 and a Reynolds number based on cavity depth of 5000 is calculated. The computation result is well presented a understanding of the physical phenomenon of tonal noise occurred primarily by well-jet shear layer and vortex shedding and an aeroacoustic feedback loop.

Navier-Stokes Analysis of Pitching Delta Wings in a Wind Tunnel

  • Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제2권2호
    • /
    • pp.28-38
    • /
    • 2001
  • A numerical method for the assessment and correction of tunnel wall interference effects on forced-oscillation testing is presented. The method is based on the wall pressure signature method using computed wall pressure distributions. The wall pressure field is computed using unsteady three-dimensional full Navier-Stokes solver for a 70-degree pitching delta wing in a wind tunnel. Approximately-factorized alternate direction implicit (AF-ADI) scheme is advanced in time by solving block tri-diagonal matrices. The algebraic Baldwin-Lomax turbulence, model is included to simulate the turbulent flow effect. Also, dual time sub-iteration with, local, time stepping is implemented to improve the convergence. The computed wall pressure field is then imposed as boundary conditions for Euler re-simulation to obtain the interference flow field. The static computation shows good agreement with experiments. The dynamic computation demonstrates reasonable physical phenomena with a good convergence history. The effects of the tunnel wall in upwash and blockage are analyzed using the computed interference flow field for several reduced frequencies and amplitudes. The corrected results by pressure signature method agree well with the results of free air conditions.

  • PDF

소유역 및 대유역 홍수유출모형의 적용 (Application of Surface Runoff-River flow Model to Small- and Large-Size Catchment Areas)

  • 유동훈
    • 한국수자원학회논문집
    • /
    • 제36권1호
    • /
    • pp.87-104
    • /
    • 2003
  • 지표면 유출과 하천 유출 통으로 구성된 동일한 홍수유출모형 SIRG-RS를 소유역과 대유역에 적용하였다. 지표면 유출로부터의 유입 방법, 하천 접합부에서의 계산방법, 급경사 산지하천에서의 에너지손실 계산 등에서 개선책을 강구하였다. 마찰력 산정을 위하여 레이놀즈수와 조고비의 함수인 지수형 마찰계수 산정식을 도입하였다. 또한 지수형 마찰계수 산정식은 실험자료뿐 아니라 최근 입수한 현장 관측자료를 사용하여 개선하였다. 개선된 모형은 대규모의 유역과 아주 작은 크기의 소유역에도 적용하였는데, 두 가지 경우 모두 관측자료와 비교하여 양호한 계산 결과를 얻었다.

신호 흐름 행렬에 의한 그래프 해석 (Analysis of Graphs Using the Signal Flow Matrix)

  • 김정덕;이만형
    • 전기의세계
    • /
    • 제22권4호
    • /
    • pp.25-29
    • /
    • 1973
  • The computation of transmittances between arbitrary input and output nodes is of particular interest in the signal flow graph theory imput. The signal flow matrix [T] can be defined by [X]=-[T][X] where [X] and [Y] are input nose and output node matrices, respectively. In this paper, the followings are discussed; 1) Reduction of nodes by reforming the signal flow matrix., 2) Solution of input-output relationships by means of Gauss-Jordan reduction method, 3) Extension of the above method to the matrix signal flow graph.

  • PDF

고차 정확도 수치기법의 GPU 계산을 통한 효율적인 압축성 유동 해석 (EFFICIENT COMPUTATION OF COMPRESSIBLE FLOW BY HIGHER-ORDER METHOD ACCELERATED USING GPU)

  • 장태규;박진석;김종암
    • 한국전산유체공학회지
    • /
    • 제19권3호
    • /
    • pp.52-61
    • /
    • 2014
  • The present paper deals with the efficient computation of higher-order CFD methods for compressible flow using graphics processing units (GPU). The higher-order CFD methods, such as discontinuous Galerkin (DG) methods and correction procedure via reconstruction (CPR) methods, can realize arbitrary higher-order accuracy with compact stencil on unstructured mesh. However, they require much more computational costs compared to the widely used finite volume methods (FVM). Graphics processing unit, consisting of hundreds or thousands small cores, is apt to massive parallel computations of compressible flow based on the higher-order CFD methods and can reduce computational time greatly. Higher-order multi-dimensional limiting process (MLP) is applied for the robust control of numerical oscillations around shock discontinuity and implemented efficiently on GPU. The program is written and optimized in CUDA library offered from NVIDIA. The whole algorithms are implemented to guarantee accurate and efficient computations for parallel programming on shared-memory model of GPU. The extensive numerical experiments validates that the GPU successfully accelerates computing compressible flow using higher-order method.

진동하는 2차원 날개 단면 주위에 대한 점성 유동장 계산( Part 2. 동적실속이 발생하는 경우 ) (Computation of Viscous Flows around a Two-dimensional Oscillating Airfoil ( Part 2. with Dynamic Stall ))

  • 이평국;김형태
    • 대한조선학회논문집
    • /
    • 제44권1호
    • /
    • pp.16-25
    • /
    • 2007
  • Studies of unsteady-airfoil flows have been motivated mostly by efforts to avoid. or reduce such undesirable effects as flutter, noise and vibrations, dynamic stall. In this paper, we carry out a computational study of viscous flows around a two-dimensional oscillating airfoil to investigate unsteady effects in these important and challenging flows. A fully implicit incompressible RANS solver has been used for calculating unsteady viscous flows around an airfoil. The cell-centered End order finite volume method is utilized to discretize governing equations. in order to ease the flow computation for fluid region changing in time, improve the qualify of solution and simplify the grid generation for an oscillating airfoil flow, the computational method adopts a moving and deforming grid generation technique based on the multi-block grid topology. The numerical method is applied for calculating viscous flows of an oscillating NACA 0012 in uniform flow. The computational results are compared with available experimental data. Computed results are compared with experimental data and flow characteristics of the experiment are reproduced well In the computed results.

로켓엔진용 연료펌프 전산유동해석

  • 노준구;최창호;김진한
    • 항공우주기술
    • /
    • 제3권2호
    • /
    • pp.183-190
    • /
    • 2004
  • 액체로켓용 연료펌프의 설계를 검증하기 위해 상용 3차원 유동해석 소프트웨어를 이용하여 설계점 성능을 예측하였다. 연료펌프의 성능과 축추력에 영향을 미치는 누설유량에 대한 예측의 정확도를 높이기 위해 인듀서, 임펠러, 볼류트 및 2차 유로를 계산영역으로 설정하였으며 인듀서/임펠러/누설유로/볼류트 사이의 경계면에 혼합면 기법을 적용하여 계산에 소요되는 시간을 줄이고자 하였다. 유동해석을 통해 예측된 수력성능은 설계요구조건을 만족시키는 것으로 나타났으나 축추력이 허용치에 비해 크게 예측되어 이를 감소시키기 위한 설계변경이 이루어졌다. 변경된 설계안에 대한 유동해석을 수행한 결과 연료펌프의 수력성능은 유지되면서 축추력은 처음의 설계안에 비해 30% 수준으로 크게 감소하였음을 확인할 수 있었다.

  • PDF

차분래티스 Subgrid모델의 난류모델을 이용한 유동현상 및 Cavity Noise 계산 (Fluid Dynamic & Cavity Noise by Turbulence Model of the FDLBM with Subgrid Model)

  • 강호근;노기덕;강명훈;김유택;이영호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.1149-1154
    • /
    • 2005
  • The finite difference lattice Boltzmann method(FDLBM) is a quite recent approach for simulating fluid flow, which has been proven as a valid and efficient tool in a variety of complex flow problems. It is considered an attractive alternative to conventional FDM and FVM, because it recovers the Navier-Stokes equations and is computationally more stable, and easily parallelizable to simulate for various laminar flows and a direct simulation of aerodynamics sounds. However, the research of a numerical simulation of turbulent flow by FDLBM, which is important to analyze the structure of turbulent flow in engineering fields, is not carried out. In this research, the FDLBM built in the turbulent model is applied, and a flowfield around 2-dimensional square to validate the applied model with 2D9V is simulated. Besides, 2D computation of the cavity noise generated by flow over a cavity at a Mach number of 0.1 and a Reynolds number based on cavity depth of 5000 is calculated. The computation result is well presented a understanding of the physical phenomenon of tonal noise occurred primarily by well-jet shear layer and vortex shedding and an aeroacoustic feedback loop.

  • PDF

병렬화된 Chimera 격자 기법을 이용한 다단 로켓의 단분리 운동 해석 (Numerical Analysis on Separation Dynamics of Multi-stage Rocket System Using Parallelized Chimera Grid Scheme)

  • 고순흠;최성진;김종암;노오현;박정주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.47-52
    • /
    • 2002
  • The supersonic flow around multi-stage rocket system is analyzed using 3-D compressible unsteady flow solver. A Chimera overset grid technique is used for the calculation of present configuration and grid around the core rocket is composed of 3 zones to represent fins in the core rocket. Flow solver is parallelized to reduce the computation time, and an efficient parallelization algorithm for Chimera grid technique is proposed. AUSMPW+ scheme is used for the spatial discretization and LU-SGS for the time integration. The flow field around multi-stage rocket was analyzed using this developed solver, and the results were compared with that of a sequential solver The speed-up ratio and the efficiency were measured in several processors. As a result, the computing speed with 12 processors was about 10 times faster than that of a sequential solver. Developed flow solver is used to predict the trajectory of booster in separation stage. From the analyses, booster collides against core rocket in free separation case. So, additional jettisoning forces and moments needed for a safe separation are examined.

  • PDF