• 제목/요약/키워드: Flow blockage

검색결과 193건 처리시간 0.022초

원자로 부수로내 혼합날개를 지나는 삼차원 열유동 해석 (Numerical Analyses of Three-Dimensional Thermo-fluid flow through Mixing Vane in A Subchannel of Nuclear Reactor)

  • 최상철;김광용
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.311-318
    • /
    • 2003
  • The present work evaluates the effects of mixing vane shape on the flow structure and heat transfer downstream of mixing vane in a subchannel of fuel assembly. by obtaining velocity and pressure fields. turbulent intensity. flow-mixing factors. heat transfer coefficient and friction factor using three-dimensional RANS analysis. Four different shapes of mixing vane. which were designed by the authors were tested to evaluate the performances in enhancing the heat transfer. Standard k-$\varepsilon$ model is used as a turbulence closure model. and. periodic and symmetry conditions are set as boundary conditions. The flow blockage ratio is kept constant. but the twist angle of mixing vane is changed. The results with three turbulence models were compared with experimental data.

전향 스윕 축류형 팬에서의 팁 누설 유동 구조 (Structure of Tip Leakage Flow in a Forward-Swept Axial-Flow Fan)

  • 이공희;백제현
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.131-136
    • /
    • 2002
  • A computational analysis using Reynolds stress model in FLUENT is conducted to give a clear understanding of the effect of blade loading on the structure of tip leakage flow in a forward-swept axial-flow fan at design condition ($\phi$=0.25) and off-design condition ($\phi$=0.21 and 0.30). The roll-up of tip leakage flow starts near the minimum static wall pressure position, and the tip leakage vortex developes along the centerline of the pressure trough within the blade passages. Near tip region, a reverse flow induced by tip leakage vortex has a blockage effect on the through-flow. As a result, high momentum region is observed below the tip leakage vortex. As the blade loading increases, the reverse flow region is more inclined toward circumferential direction and the onset position of the rolling-up of tip leakage flow moves upstream. Because the casing boundary layer becomes thicker, and the mixing between the through-flow and the leakage jet with the different flow direction is enforced, the streamwise vorticity decays more fast with blade loading increasing. The computational results show that a distinct tip leakage vortex is observed downstream of the blade trailing edge at $\phi$=0.30, but it is not observed at $\phi$=0.21 and 0.25.

  • PDF

베인 타입 스태틱 믹서의 기하학적 변수에 따른 디젤 배기관 내 유동특성에 관한 연구 (Numerical Study of the Flow Characteristics in a Diesel Exhaust System with a Vane-Type Static Mixer)

  • 강경남;이지근;김만영
    • 대한기계학회논문집B
    • /
    • 제36권4호
    • /
    • pp.397-404
    • /
    • 2012
  • 디젤엔진 SCR 시스템 내에서 $NO_x$를 저감을 위한 베인 타입 스태틱 믹서의 혼합유동특성을 수치적으로 연구하였다. 믹서는 원형관의 입구로부터 유동방향으로 직경의 57배 떨어진 구간에 설치하였다. 베인이 유동 축과 이루는 각과 베인의 크기 그리고 위치의 변화에 따른 유동 및 혼합특성을 고찰하였다. 원형관내에서 믹서를 통과하는 유동의 특성은 UI, 선회비, 그리고 압력계수와 같은 특성화된 성능지수로 나타내었다. 해석결과 성능지수들은 베인 각과 차단비, 베인 위치와 같은 기하학적 변수에 영향을 받음을 확인하였다. 특히, 베인 각, 베인 크기가 커지거나 원형관내의 벽면에 가까이 설치될수록 선회비는 증가하는 것을 확인하였다.

5공 피토관 및 회전 열선 유속계에 의한 축류 홴 내부 유동장 계측 및 평가 (Flow Measurements and Performance Analysis using a 5-Hole Pitot Tube and a Rotating Hot-Wire Probe in an Axial Flow Fan)

  • 장춘만;김광용
    • 대한기계학회논문집B
    • /
    • 제27권12호
    • /
    • pp.1750-1757
    • /
    • 2003
  • This paper describes the flow measurements inside the blade passage of an axial flow fan by using a rotating hot-wire probe sensor from a relative flame of reference fixed to the rotor blades. The validity of fan rotor designed by a streamline curvature equation was performed by the measurement of the three-dimensional flow upstream and downstream of the fan rotor using a 5-hole pitot tube. The vortical flow structure near the rotor tip can be clearly observed by the measurements of a relative velocity and its fluctuation on quasi-orthogonal planes to a tip leakage vortex. Larger vortical flow, which results in higher blockage in the main flow, is formed according to decrease a flow rate. The vortical flow spreads out to the 30 percent span from the rotor tip at near stall condition. In the design operating condition, the tip leakage vortex is moved downstream while the center of the vortex keeps constant in the spanwise direction. Detailed characteristics of a velocity fluctuation with relation to the vortex were also analyzed.

유량에 따른 축류홴의 익단누설와류 특성 (Flow Characteristics of a Tip Leakage Vortex at Different Flow Rates in an Axial Flow Fan)

  • 장춘만;김광용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1383-1388
    • /
    • 2004
  • The flow characteristics in the blade passage of a low speed axial flow fan have been investigated by experimental analysis using a rotating hot-wire sensor for design and off-design operating conditions. The results show that the tip leakage vortex is moved upstream when flow rate is decreased, thus disturbing the formation of wake flow near the rotor tip. The tip leakage vortex interfaces with blade pressure surface, and results in high velocity fluctuation near the pressure surface. From the relative velocity distributions near the rotor tip, large axial velocity decay is observed at near stall condition, which results in large blockage compared to that at the design condition. Througout the flow measurements using a quasi-orthogonal measuring points to the tip leakage vortex, it is noted that the radial position of the tip leakage vortex is distributed between 94 and 96 percent span for all flow conditions. High spectrum density due to the large fluctuation of the tip leakage vortex is observed near the blade suction surface below the frequency of 1000 Hz at near stall condition.

  • PDF

전향 축류형 홴에서의 익단 누설 유동 구조 (Structure of Tip Leakage Flow in a Forward-Swept Axial-Flow Fan)

  • 이공희;명환주;백제현
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.883-892
    • /
    • 2003
  • The experiment using three-dimensional laser Dopperr velocimetery (LDV) measurements and the computation using the Reynolds stress model of the commercial code, FLUENT, were conducted to give a clear understanding on the structure of tip leakage flow in a forward-swept axial-flow fan operating at the maximum efficiency condition. The tip leakage vortex was generated near the position of the minimum wall static pressure, which was located at approximately 12% chord downstream from the leading edge of blade suction side, and developed along the centerline of the pressure trough within the blade passages. A reverse flow between the blade tip region and the casing, induced by tip leakage vortex, acted as a blockage on the through-flow. As a result, high momentum flux was observed below the tip leakage vortex. As the tip leakage vortex proceeded to the aft part of the blade passage, the strength of tip leakage vortex decreased due to the strong interaction with the through-flow and casing boundary layer, and the diffusion of tip leakage vortex caused by high turbulence. In comparison with LDV measurement data, the computed results predicted the complex viscous flow patterns inside the tip region, including the locus of tip leakage vortex center, in a reliable level.

터어보 기계(機械) 내부(內部)의 비가역(非可逆) H-S유동(流動)을 고려(考慮)한 준(準)3차원(次元) 유동해석(流動解析) (Quasi-Three Dimensional Calculation of Compressible Flow in a Turbomachine considering Irreversible H-S Flow)

  • 조강래;오종식
    • 설비공학논문집
    • /
    • 제3권4호
    • /
    • pp.241-249
    • /
    • 1991
  • A quasi-three dimensional calculation method is presented on the basis of Wu's idea using finite element methods. In B-B flow the governing equations are cast into a single equation to overcome the restriction of the type of turbomachinery, and Kutta condition is exactly assured by introducing a combination of two kinds of stream functions. In H-S flow a dissipative force which is assumed to be opposed to the relative velocity is added to the governing equation for a consistent loss model. The entropy change along each streamline is then calculated by assuming that the dissipative force may be a force coming from laminar viscous stresses with inviscid velocity distributions. Both the flow solvers are combined to build a three-dimensional flow field through a few iterations. For an effect of the distortion of H-S flow surface the body forces are computed after each B-B flow calculation is finished. Mizuki's centrifugal impellers are tested numerically. The reliability of the numerical solution compared with experimental data is guaranteed.

  • PDF

실지형을 지나는 대기유동에 대한 수치모델의 검증 (Validation of Numerical Model for the Wind Flow over Real Terrain)

  • 김현구;이정묵;노유정
    • 한국대기환경학회지
    • /
    • 제14권3호
    • /
    • pp.219-228
    • /
    • 1998
  • In the present investigation, a numerical model developed for the prediction of the wind flow over complex terrain is validated by comparing with the field experiments. For the solution of the Reynolds - Averaged Clavier- stokes equations which are the governing equations of the microscale atmospheric flow, the model is constructed based on the finite-volume formulation and the SIMPLEC pressure-correction algorithm for the hydrodynamic computation. The boundary- fitted coordinate system is employed for the detailed depiction of topography. The boundary conditions and the modified turbulence constants suitable for an atmospheric boundary- layer are applied together with the k- s turbulence model. The full- scale experiments of Cooper's Ridge, Kettles Hill and Askervein Hill are chosen as the validation cases . Comparisons of the mean flow field between the field measurements and the predicted results show good agreement. In the simulation of the wind flow over Askervein Hill , the numerical model predicts the three dimensional flow separation in the downslope of the hill including the blockage effect due to neighboring hills . Such a flow behavior has not been simulated by the theoretical predictions. Therefore, the present model may offer the most accurate prediction of flow behavior in the leeside of the hill among the existing theoretical and numerical predictions.

  • PDF

Visualization of Turbulent Flow Fields Around a Circular Cylinder at Reynolds Number 1.4×105 Using PIV

  • Jun-Hee Lee;Bu-Geun Paik;Seok-Kyu Cho;Jae-Hwan Jung
    • 한국해양공학회지
    • /
    • 제37권4호
    • /
    • pp.137-144
    • /
    • 2023
  • This study investigates the experimental parameters of particle image velocimetry (PIV) to enhance the measurement technique for turbulent flow fields around a circular cylinder at a Reynolds number (Re) of 1.4×105. At the Korea Research Institute of Ships & Ocean Engineering (KRISO), we utilized the cavitation tunnel and PIV system to capture the instantaneous flow fields and statistically obtained the mean flow fields. An aspect ratio and blockage ratio of 16.7% and 6.0%, respectively, were considered to minimize the tunnel wall effect on the cylinder wakes. The optimal values of the pulse time and the number of flow fields were determined by comparing the contours of mean streamlines, velocities, Reynolds shear stresses, and turbulent kinetic energy under their different values to ensure accurate and converged results. Based on the findings, we recommend a pulse time of 45 ㎲ corresponding to a particle moving time of 3-4 pixels, and at least 3,000 instantaneous flow fields to accurately obtain the mean flow fields. The results of the present study agree well with those of previous studies that examined the end of the subcritical flow regime.

다공튜브 오리피스 면적비 변화가 출구유동에 미치는 영향 (Effect of the Orifice Area Ratio on the Exit Flow of a Multi-Perforated Tube)

  • 이상규;이지근
    • 설비공학논문집
    • /
    • 제25권6호
    • /
    • pp.317-323
    • /
    • 2013
  • A multi-perforated tube indicates the existence of multiple holes of various shapes on the surface of a long cylinder-type or rectangular tube, and a hole installed on the surface is called an orifice, as it is relatively small in size, compared with the surface area of the tube. In this study, the flow characteristics of a circular multi-perforated tube with many orifices on the surface were investigated experimentally and numerically. The volume flowrate issuing from each orifice, discharge angle, effective flow area ratio, and the flow fields around the orifices were measured and visualized, with the variation of the orifice area ratio, at the same blockage ratio. The volume flowrate distributions along the flow direction of the multi-perforated tube tends to be more uniform, as larger orifices were positioned at the inlet side of the multi-perforated tube, compared with no orifice area change along the flow direction.