• 제목/요약/키워드: Flow attack angle

검색결과 391건 처리시간 0.027초

Single micro Vortex Generator의 후류에 대한 수치적 연구 (NUMERICAL STUDY ON THE WAKE OF A SINGLE MICRO VORTEX GENERATOR)

  • 김건홍;박승오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.494-499
    • /
    • 2011
  • One of the devices to prevent separated flow over a wing or a flap at high angle of attack is a vortex generator. In the present work, we numerically study the flow around a low-profile or micro vortex generator whose height is less than local boundary layer thickness which can delay separation with a minimum drag penalty owing to its very small wetted surface area. As a first step toward a parametric study to efficiently design this MVG flow control system, we simulate the flow around a single MVG on a flat plate. For the simulation, we employ OpenFOAM with Launder-Sharma ${\kappa}$-epsilon model. The analysis results are validated by comparing with experimental results of a rectangular MVG at an angle of attack of 10 degrees whose height is 20% of local boundary layer. Important results and aspects of this numerical study are discussed. We also simulate the flow around rectangular, triangular and trapezoidal MVGs and the results are compared

  • PDF

고받음각 오자이브의 비대칭 와류에 작용하는 구동기 효과 분석 (Effect of the Flow Actuator on the Asymmetric Vortex at High Angle of Attack)

  • 이은석;이진익;이광섭
    • 한국군사과학기술학회지
    • /
    • 제16권5호
    • /
    • pp.607-612
    • /
    • 2013
  • The effect of the flow actuator on the asymmetric vortex structure around the ogive-cylinder body with fineness ratio of 4 flying at the speed of Mach 0.1 at angle of attack of 50 degree is studied. The ogive-cylinder model is developed with the actuator placed near the nose tip and numerically simulated using the in-house CFD code named KFLOW. The numerical simulation employs two different actuator modeling: one is the boundary condition given by blowing normal to the surface and another shearing on the surface. The numerical simulation reveals that response of the vortex structure to the actuation is dependent on the type of modeling as well as the strength and direction of the actuation.

받음각 변화에 따른 아르키메데스 풍력발전 날개 주위의 유동장 변화 (Flow Characteristics around Archimedes Wind Turbine according to the Change of Angle of Attack)

  • 리치앙;김현동;지호성;김경천
    • 한국가시화정보학회지
    • /
    • 제11권1호
    • /
    • pp.28-33
    • /
    • 2013
  • This paper describes aerodynamic characteristics of an Archimedes spiral wind turbine with various angles of attack. The range of angles was controlled from $-30^{\circ}$ (clockwise) to $+30^{\circ}$ (clockwise). The rotating speed of wind turbine at the same angle of attack in both directions was different. The reason why the-maximum rotational speed was observed at $15^{\circ}$ in clockwise direction can be explained based on angular momentum conservation. Quantitative flow visualization around Archimedes wind turbine blade was carried out between $-15^{\circ}$ (clockwise) and $+15^{\circ}$ (counter clockwise) using high resolution PIV method. The relationship between drag force and rotating speeds was discussed. From these results, optimum design on yawing system of Archimedes spiral wind turbine may provide high efficiency on small wind power system.

Sensitivity analysis of transonic flow past a NASA airfoil/wing with spoiler deployments

  • AKuzmin, lexander
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권3호
    • /
    • pp.232-240
    • /
    • 2014
  • Transonic flow past a NASA SC(2)-0710 airfoil with deployments of a spoiler up to $6^{\circ}$ was studied numerically. We consider angles of attack from $-0.6^{\circ}$ to $0.6^{\circ}$ and free-stream Mach numbers from 0.81 to 0.86. Solutions of the unsteady Reynolds-averaged Navier-Stokes equations were obtained with a finite-volume solver using several turbulence models. Both stationary and time-dependent deployments of the spoiler were examined. The study revealed the existence of narrow bands of the Mach number, angle of attack, and spoiler deflection angle, in which the flow was extremely sensitive to small perturbations. Simulations of 3D flow past a swept wing confirmed the flow sensitivity to small perturbations of boundary conditions.

Slocum 수중 글라이더의 유영 받음각에 대한 전산유동해석 및 항력계수 연구 (Computational Flow Analysis and Drag Coefficient Research for Angle of Attack in Slocum Underwater Glider)

  • 박정우;이정우;최영호;서갑호;서진호;박종진
    • 한국해양공학회지
    • /
    • 제30권5호
    • /
    • pp.381-388
    • /
    • 2016
  • An underwater glider makes it easy to explore a wide area with low power. However, an underwater glider is difficult to use for rapid collection, because the surfacing location cannot be predicted after a dive. Thus, simulation research is needed to predict the swimming path. In this paper, based on research, a linearized equation is derived for the drag coefficient at each angle of attack by assuming the boundary conditions for the Slocum underwater glider and performing a computational flow analysis.

받음각을 갖는 3차원 캐비테이터에서 발생하는 비축대칭 초공동 유동해석 (Numerical Analysis of Non-Axisymmetric Supercavitating Flow Around a Three-Dimensional Cavitator with an Angle of Attack)

  • 황대규;안병권
    • 대한조선학회논문집
    • /
    • 제60권4호
    • /
    • pp.240-247
    • /
    • 2023
  • In this study, morphological and hydrodynamic characteristics of the non-axisymmetric supercavity generated behind a disk-shaped cavitator were examined. By extending the previous study on axisymmetric supercavitating flow based on a boundary element method, hydrodynamic forces acting under the angle of attack condition of 0 to 30 ° and shape characteristics of the supercavity were analyzed. The results revealed that increasing the angle of attack by 30 ° reduced the length and width of the cavity by about 15% and the volume by about 40 %. An empirical formula that can quantitatively estimate the geometrical characteristics and change of the cavity was derived. It is expected that this method can be used to evaluate the shape information and force characteristics of the supercavity for the control of the vehicle in a very short time compared to the viscous analysis in the initial design stage of the supercavity underwater vehicle.

박격포 포신 제작을 위한 Inconel718 소재의 전진 유동성형 조건 선정에 관한 연구 (A Study on the Selection of Forward Flow Forming Conditions with Inconel718 Tube for Mortar Barrel Manufacturing)

  • 고세권;조영태
    • 한국기계가공학회지
    • /
    • 제18권8호
    • /
    • pp.51-59
    • /
    • 2019
  • Flow forming is an eco-friendly and high-efficiency plastic deformation process with fewer chips during a process which is specifically used to manufacture seamless tubular products like tire wheels, rocket motor cases etc. On the development of mortar barrel using Inconel718 tube, some flow formed products had dimensional errors on their thickness. In this study, our purpose is to optimize the process conditions with the smallest dimensional error. In order to find an optimum process condition, 2D axisymmetric FEM simulation analyses with Taguchi method were conducted. Geometric variables (attack angle, flatting angle, roller nose radius) and operating parameters (depth of forming, feed rate) are considered as control factors. Forward flow forming with single roller was first analyzed to determine the effective factors using AFDEX software and attack angle of the roller was identified as the most influential factor. Also, the nose radius of the rollers was confirmed as a significant factor in multi-rollers flow forming system. The effect of rollers offset values are also studied and finally, we proposed optimal conditions to improve the accuracy of flow forming process with Inconel718 tube for mortar barrel manufacturing.

와류발생기의 충돌각과 루버각의 상호작용에 의한 열전달촉진 (Heat Transfer Enhancement by the Combined Effect of Louver Angle and Angle of Attack of Vertex Generator)

  • 박병규;정재동;이준식
    • 설비공학논문집
    • /
    • 제14권6호
    • /
    • pp.477-484
    • /
    • 2002
  • A numerical investigation of the performance of the plate heat exchanger with rectangular winglet is conducted to examine the combined effect of vortex generator and louver fins. Velocity and temperature fields and spanwise averaged Nu and friction factor are presented. Enhancement of heat transfer and flow loss penalty is evident. A Parametric study of three factors (Re, angle of attack and louver angle) with levels of 5 (Re= 300, 500, 700, 900, 1100), 4($\alpha=15^{\circ}, 30^{\circ}, 45^{\circ}, 90^{\circ},$), and 4($\beta=0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}$), respectively, indicates the performance defined by the ratio of heat transfer enhancement to flow loss penalty shows monotonic behavior for each parameter alone but the interactions between parameters is found to be considerable effect on the performance of heat exchanger and should be considered in design. The effect of stamping is also examined.

마하4 초음속 공기 흡입구 유동 특성에 관한 연구 (Study on the Flow Characteristics of Supersonic Air Intake at Mach 4)

  • 이형진;정인석;최정열;김성돈
    • 한국항공우주학회지
    • /
    • 제34권10호
    • /
    • pp.61-70
    • /
    • 2006
  • 마하 4 비행 조건에서 작동하는 고성능 램제트와 듀얼모드 스크램제트 엔진의 초음속 공기 흡입구 모델을 설계하였다. 배압, 받음각, 요각 등 비행 변수의 변화에 따른 내부 유동 특성을 파악하기 위하여 규슈대학교의 불어내기식 초음속 풍동을 이용한 실험을 수행하였다. 유동 가시화를 위하여 쉴리렌 기법, 오일 가시화 기법을 이용하였으며, 정량적 성능 분석을 위하여 표면 압력 및 전압력을 측정하였다. 실험의 결과는 전산 유체 해석과 비교하였다. 본 연구는 기본적이지만 찾기 힘든 고 마하수 초음속 공기 흡입구 유동의 실험 결과를 제시한다.

파력 발전용 웰즈터빈의 유동특성에 관한 수치적 연구 (Numerical Analysis of Flow Characteristics in the Wells Turbine for Wave Power Conversion)

  • 이형구;김정환;이연원
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.325-333
    • /
    • 2000
  • The aerodynamics of the Wells turbine has been studied using a 3-dimensional, unstructured mesh flow solver for the Reynolds-averaged Navier-Stokes equations. The basic feature of the Wells turbine is that even though the cyclic airflow produces oscillating axial forces on the airfoil blades, the tangential force on the rotor is always in the same direction. Geometry used to define the 3-dimensional numerical grid is based upon that of an experimental test rig. The 3-dimensional Wells turbine model, consisting of approximate 220,000 cells is tested at four axial flow rates. In the calculations the angle of attack has been varied between $10^{\circ}$ and $30^{\circ}$ of blades. Representative results from each case are presented graphically and analyzed. It is concluded that this method holds much promise for future development of Wells turbines.

  • PDF