• Title/Summary/Keyword: Flow accelerate corrosion

Search Result 8, Processing Time 0.025 seconds

Study Characteristics in Packed Tower of Liquid Desiccant Solar Cooling System Using Counter Flow Configuration

  • Rahmanto, R. Hengki;Choi, K.H.;Agung, B.;Sukmaji, I.C.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.168-174
    • /
    • 2009
  • High water vapour content in air can cause a number of problems as for human or surrounding materials. For human a high water vapour can create physiological stress, discomfort, and also can encourage ill health. While, the cause for the environment is can accelerate the corrosion of metals, accelerate the growth of spores and mould, can reduce the electrical resistance of insulators and etc. Desiccant systems have been proposed as energy saving alternatives to vapor compression air conditioning for handling especially the latent load and also sensible load. Use of liquid desiccants offers several design and performance advantages over solid desiccants, especially when solar energy is used for regeneration. The liquid desiccants contact the gas inside the packed tower of liquid desiccant solar cooling system and the heat transfer and mass transfer will occur. This thesis is trying to study the characteristics inside the packed tower of dehumidifier systems. This characteristics consist of mass transfer rate, heat transfers rate, human comfort and energy that consume by the system. Those characteristics were affected by air flow rates, air temperature and humidity, and desiccant temperature and all that variation will influence the performance of the systems. The results of this thesis later on can be used to determine the best performance of the systems.

  • PDF

Modeling of deposition and erosion of CRUD on fuel surfaces under sub-cooled nucleate boiling in PWR

  • Seungjin Seo;Nakkyu Chae;Samuel Park;Richard I. Foster;Sungyeol Choi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2591-2603
    • /
    • 2023
  • Simulating the Corrosion-Related Unidentified Deposit (CRUD) on the surface of fuel assemblies is necessary to predict the axial offset anomaly and the localized corrosion induced by the CRUD during the operation of nuclear power plants. A new CRUD model was developed to predict the formation of the CRUD deposits, considering the deposition and erosion mechanisms. The heat transfer and capillary flow within the CRUD were also considered to evaluate the boiling amount within the CRUD layer. This model predicted a CRUD deposit thickness of 44 ㎛ during a one-cycle operation of the Seabrook nuclear power plant. The CRUD deposition tended to accelerate and decelerate during the simulation, by being related to boiling mechanism on the deposits surface. Additionally, during a three-cycle operation corresponding to the refueling period, the CRUD deposition was saturated at a thickness of 80 ㎛, which was in good agreement with the suggested thickness for CRUD buildupin pressurized water reactors. Surface boiling on the thin CRUD deposits enhanced the acceleration of the deposition, even when the wick boiling properties were not favorable for CRUD deposition. To ensure the certainty of the simulation results, sensitivity analyses were conducted for the porosity, chimney density, and the constants employed in the proposed model of the CRUD.

Analsis of Preponderant Wear of Earth Brush for an Electrical Multiple Units(EMUs) (전동차용 접지브러쉬 편중마모에 대한 해석)

  • Park, Byung-Sup;Ku, Jung-Su;Kim, Gil-Dong
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.356-361
    • /
    • 2005
  • Earth brush for electrical multiple units(EMUs) is a device through which the current of the EMU load's consumed power fed from the DC 1,500V overhead line (or from the AC 25.000V catenary) flows via axle to the rail(ground) and which prevents the electric corrosion of the axle bearings by preventing the current flow to the axle bearings caused by electric potential from the magnetic field when the bearings rotate together with the earthing function when a thunderbolt falls or a surge comes. The earth brush wear rates among cars, however, shows quite differences when the earth brushes after being separated from the holders are measured with vernier callipers every 6 months of maintenance period. Main causes of the earth brush wear are divided as mechanical, electric arc and electrical one, and the factors can be running speed, current, harmonics, connection state. spring tension, earth brush material, lubricant and so on. but only the earth brushes of the motor(M1) car show the highest wear rate and moreover maintenance difficulty occurs because of the wear rate differences among e earth brushes in one holder. The reason for these preponderant wear comes from the design concept of making preponderant current flow to some particular earth brushes and moreover the heat generated by the harmonics when the inverter starts to operate accelerate the wear. By defining these causes through experiments. I hope that the found results would be helpful for the future EMU design, safety, economy and maintenance.

  • PDF

Labyrinth Seal Design for Preventing Internal Inflow of Plating Solution (도금액의 내부 유입 방지를 위한 래버린스 시일 설계)

  • Lee, Duck-Gyu;Kim, Wan-Doo
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.256-262
    • /
    • 2017
  • Molten zinc plating is a process in which zinc is thinly coated over a metallic or non-metallic surface. It is used in various industrial fields for corrosion resistance and decoration. During the process, a steel sheet is passed through a roll that rotates inside the molten zinc liquid in the temperature range of $460^{\circ}C$ to $680^{\circ}C$, and the plating liquid flows into the roll causing abrasion and erosion of the roll surface. This problem is known to accelerate the replacement cycle of the roll and cause considerable economic loss owing to production line stoppage. Here, we propose a mechanism that operates at high temperature and pressure with a labyrinth type seal design to resolve this problem. We theoretically investigate the flow of the plating solution inside the seal and compute the minimum rotation speed required to prevent the plating solution from entering the seal chamber. In addition, we calculate the thermal deformation of the seal during operation and display thermally deformed dimensions at high temperatures. To verify the theoretical results, we perform experiments using pilot test equipment working in the actual plating environment. The experimental results are in good agreement with theoretical results. We expect our results to contribute towards the extension of the roll's life span and thereby reduce the economic losses.

The DISNY facility for sub-cooled flow boiling performance analysis of CRUD deposited zirconium alloy cladding under pressurized water reactor condition: Design, construction, and operation

  • Ji Yong Kim;Yunju Lee;Ji Hyun Kim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3164-3182
    • /
    • 2023
  • The CRUD on the fuel cladding under the pressurized water reactor (PWR) operating condition causes several issues. The CRUD can act as thermal resistance and increases the local cladding temperature which accelerate the corrosion process. The hideout of boron inside the CRUD results in axial offset anomaly and reduces the plant's shutdown margin. Recently, there are efforts to revise the acceptance criteria of emergency core cooling systems (ECCS), and additionally require the modeling of the thermal resistance effect of the CRUD during the performance analysis. There is an urgent need for the evaluation of the effect of the CRUD deposition on the cladding heat transfer under PWR operating conditions, but the experimental database is very limited. The experimental facility called DISNY was designed and constructed to analyze the CRUD-related multi-physical phenomena, and the performance analysis of the constructed DISNY facility was conducted. The thermal-hydraulic and water chemistry conditions to simulate the CRUD growth under PWR operating conditions were established. The design characteristics and feasibility of the DISNY facility were validated by the MARS-KS code analysis and separate performance tests. In the current study, detailed design features, design validation results, and future utilization plans of the proposed DISNY facility are presented.

Behaviors of Cavitation Damage in Seawater for HVOF Spray Coated Layer with WC-10Co4Cr on Cu Alloy (WC-10Co4Cr으로 초고속 화염용사 코팅된 Cu 합금의 해수내 캐비테이션 손상 거동)

  • Han, Min-Su;Kim, Min-Sung;Jang, Seok-Ki;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.264-271
    • /
    • 2012
  • Due to the good corrosion resistance and machinability, copper alloy is commonly employed for shipbuilding, hydroelectric power and tidal power industries. The Cu alloy, however, has poor durability, and the seawater application at fast flow condition becomes vulnerable to cavitation damage leading to economic loss and risking safety. The HVOF(High Velocity Oxygen Fuel) thermal spray coating with WC-10Co4Cr were therefore introduced as a replacement for chromium or ceramic to minimize the cavitation damage and secure durablility under high-velocity and high-pressure fluid flow. Cavitation test was conducted in seawater at $15^{\circ}C$ and $25^{\circ}C$ with an amplitude of $30{\mu}m$ on HVOF WC-10Co4Cr coatings produced by thermal spray. The cavitation at $15^{\circ}C$ and $25^{\circ}C$ exposed the substrate in 12.5 hours and in 10 hours, respectively. Starting from 5 hours of cavitation, the coating layer continued to show damage by higher than 160% over time when the temperature of seawater was elevated from $15^{\circ}C$ to $25^{\circ}C$. Under cavitation environment, although WC-10Co4Cr has good wear resistance and durability, increase in temperature may accelerate the damage rate of the coating layer mainly due to cavitation damage.

An Assessment Study on Stability of Various Coating Treatment of Metallic Artifacts Using V-Flon (불소 수지(V-Flon)를 이용한 금속유물의 코팅 형성에 대한 안전성 평가 연구)

  • Lee, Jung-Min;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.26 no.2
    • /
    • pp.149-156
    • /
    • 2010
  • One of resins, V-Flon is useful as a coating material because YK-D80, which is a solvent for V-Flon, is not highly volatile. However, it can not completely harden and can flow out when metal artifacts are joined and restored in the process of the treatment. Therefore, after the impregnation process in order to accelerate the hardening speed of a coating material, usually a dry oven was adopted. This study focused on finding the problems on the dry oven which is employed to increase the speed and investigating the most effective solvent and its composition by checking any change occurred depending on the concentration of solvents. Six different types of solvents were selected and samples were prepared in a manner that they were impregnated with solvents in three concentrations respectively (10%, 20%, 30%). To determine the condition of the samples, the stability evaluation was performed by measuring the change of color and the gloss, the thickness of coated layers, the corrosion after coating, the water resistance by contact angles. Through the comparative experiments between the natural drying and the artificial drying using a dry oven, it was found that when the dry oven is used, some problems are identified on the point of forming a uniform and stable layer because of the unstable data collected from the forced artificial dry. The experiments performed using 3 different concentration rates (10%, 20%, 30%) presented that in the case of 10% V-Flon in Xylene (using as a solvent), its layer was thin as well as it showed the high water-barrier property, which allows it to form the stably coated layer with the lower gloss and color change.