• Title/Summary/Keyword: Flow Softening

Search Result 89, Processing Time 0.027 seconds

FE analysis of RC structures using DSC model with yield surfaces for tension and compression

  • Akhaveissy, A.H.;Desai, C.S.;Mostofinejad, D.;Vafai, A.
    • Computers and Concrete
    • /
    • v.11 no.2
    • /
    • pp.123-148
    • /
    • 2013
  • The nonlinear finite element method with eight noded isoparametric quadrilateral element for concrete and two noded element for reinforcement is used for the prediction of the behavior of reinforcement concrete structures. The disturbed state concept (DSC) including the hierarchical single surface (HISS) plasticity model with associated flow rule with modifications is used to characterize the constitutive behavior of concrete both in compression and in tension which is named DSC/HISS-CT. The HISS model is applied to shows the plastic behavior of concrete, and DSC for microcracking, fracture and softening simulations of concrete. It should be noted that the DSC expresses the behavior of a material element as a mixture of two interacting components and can include both softening and stiffening, while the classical damage approach assumes that cracks (damage) induced in a material treated acts as a void, with no strength. The DSC/HISS-CT is a unified model with different mechanism, which expresses the observed behavior in terms of interacting behavior of components; thus the mechanism in the DSC is much different than that of the damage model, which is based on physical cracks which has no strength and interaction with the undamaged part. This is the first time the DSC/HISS-CT model, with the capacity to account for both compression and tension yields, is applied for concrete materials. The DSC model allows also for the characterization of non-associative behavior through the use of disturbance. Elastic perfectly plastic behavior is assumed for modeling of steel reinforcement. The DSC model is validated at two levels: (1) specimen and (2) practical boundary value problem. For the specimen level, the predictions are obtained by the integration of the incremental constitutive relations. The FE procedure with DSC/HISS-CT model is used to obtain predictions for practical boundary value problems. Based on the comparisons between DSC/HISS-CT predictions, test data and ANSYS software predictions, it is found that the model provides highly satisfactory predictions. The model allows computation of microcracking during deformation leading to the fracture and failure; in the model, the critical disturbance, Dc, identifies fracture and failure.

Ring Shear Characteristics of Waste Rock Materials in Terms of Water Leakage (누수유무에 따른 광산폐석의 링전단특성)

  • Jeong, Sueng Won
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.307-314
    • /
    • 2016
  • Shear characteristics of soils can be investigated using various types of shear stress measuring apparatus. Ring shear tests are often applied for examining the residual shear strength under the unlimited deformation. This paper presents drainage-consolidation-shear velocity dependent undrained shear strengths measured in terms of water leakage. A series of ring shear tests were performed under the constant normal stress (50 kPa) and controled shear velocity ranging from 0.01~1 mm/sec under the undrained condition. As a result, undrained shear strengths are dependent on shear velocity. It exhibits that straining hardening behavior is observed for the shear velocity lower than 0.1 mm/sec; however, the strain softening behavior is observed for the shear velocity higher than 0.1 mm/sec. Water leakage can cause the increase in shear stress irrespective of shear velocity. Shear stress increases with increasing amount of water leakage. It is due to the fact that the small grains and water flow out through the rubble edge in the ring shear box. Repetitive saturation and consolidation processes may minimize the error.

Determination and Verification of Flow Stress of Low-alloy Steel Using Cutting Test (절삭실험을 이용한 저합금강의 유동응력 결정 및 검증)

  • Ahn, Kwang-Woo;Kim, Dong-Hoo;Kim, Tae-Ho;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.50-56
    • /
    • 2014
  • A technique based on the finite element method (FEM) is used in the simulation of metal cutting process. This offers the advantages of the prediction of the cutting force, the stresses, the temperature, the tool wear, and optimization of the cutting condition, the tool shape and the residual stress of the surface. However, the accuracy and reliability of prediction depend on the flow stress of the workpiece. There are various models which describe the relationship between the flow stress and the strain. The Johnson-Cook model is a well-known material model capable of doing this. Low-alloy steel is developed for a dry storage container for used nuclear fuel. Related to this, a process analysis of the plastic machining capability is necessary. For a plastic processing analysis of machining or forging, there are five parameters that must be input into the Johnson-Cook model in this paper. These are (1) the determination of the strain-hardening modulus and the strain hardening exponent through a room-temperature tensile test, (2) the determination of the thermal softening exponent through a high-temperature tensile test, (3) the determination of the cutting forces through an orthogonal cutting test at various cutting speeds, (4) the determination of the strain-rate hardening modulus comparing the orthogonal cutting test results with FEM results. (5) Finally, to validate the Johnson-Cook material parameters, a comparison of the room-temperature tensile test result with a quasi-static simulation using LS-Dyna is necessary.

Hot Deformation Behavior and Microstructural Evolution of Powder Metallurgy Ti-6Al-4V Alloy (티타늄 합금 분말 소결체의 고온 변형 거동 및 미세조직 연구)

  • Kim, Youngmoo;Song, Young-Beom;Lee, Sung Ho;Kwon, Young-Sam
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.277-285
    • /
    • 2014
  • The effects of processing parameters on the flow behavior and microstructures were investigated in hot compression of powder metallurgy (P/M) Ti-6Al-4V alloy. The alloy was fabricated by a blended elemental (B/E) approach and it exhibited lamellar ${\alpha}+{\beta}$ microstructure. The hot compression tests were performed in the range of temperature $800-1000^{\circ}C$ with $50^{\circ}C$ intervals, strain rate $10^{-4}-10s^{-1}$, and strain up to 0.5. At $800-950^{\circ}C$, continuous flow softening after a peak stress was observed with strain rates lower than $0.1s^{-1}$. At strain rates higher than $1s^{-1}$, rapid drop in flow stress with strain hardening or broad oscillations was recorded. The processing map of P/M Ti-6Al-4V was designed based on the compression test and revealed the peak efficiency at $850^{\circ}C$ and $0.001s^{-1}$. As the processing temperature increased, the volume fraction of ${\beta}$ phase was increased. In addition, below $950^{\circ}C$, the globularization of phase at the slower strain rate and kinking microstructures were found. Based on these data, the preferred working condition of the alloy may be in the range of $850-950^{\circ}C$ and strain rate of $0.001-0.01s^{-1}$.

Removal of Hardness Ions by Crossflow Ceramic Ultrafiltration Process with Adding Lime-soda Ash (석회-소다회를 주입한 십자흐름 세라믹 한외여과공정을 이용한 경도 이온 제거)

  • Park, Jin-Yong;Park, Bo-Reum
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.191-196
    • /
    • 2007
  • In the study, excess of lime-soda ash(L-S) was added to groundwater for chemical precipitation of hardness ions. After formation of the coagulated flocs, sedimentation step was replaced with crossflow ultrafiltration(UF) process using tubular ceramic membrane. As results, our treated water was below total hardness(TH) 10 mg/L as $CaCO_3$ from groundwater using washing water in a soymilk factory. Then, we investigated the change of permeat flux(J) and dimensionless permeate flux($J/J_0$) during experiments for variations of TMP(Trans-membrane pressure) or flow rate, to see effect of TMP or flow rate on membrane fouling by the coagulated Inorganic flocs. In the result, membrane fouling and rejection rate of total hardness were not affected by TMP and flow rate variations in the range of our experiments.

A Proposed Analytical Model for the Debris Flow with Erosion and Entrainment of Soil Layer (지반의 침식 및 연행작용을 고려한 토석류 해석 모델 제안)

  • Lee, Kwang-Woo;Park, Hyun-Do;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.10
    • /
    • pp.17-29
    • /
    • 2016
  • A debris flow analysis model has been developed to simulate the erosion and entrainment of soil layer. Special attention is given to the model which represents strength softening behaviour of soil layer due to velocity of deformation. The 3D FE analysis by Coupled Eulerian-Lagrangian (CEL) model is conducted to simulate the debris flow. The model is validated using published data on laboratory experiment (Mangeny et al., 2010). It has been definitely shown that proposed model is in good agreement with the results of laboratory data. Futhermore, the FE analysis is conducted to ensure capability of simulating the real scale debris flow. The result of Ramian watershed, Korea shows that the debris flow has increased the volume and speed and it is in good agreement with field investigation. Based on this, it is confirmed that proposed model shows good agreement of the behavior of the actual and analytical debris flow.

A Study of Localization for Adiabatic Shear Band in WHA(Tungsten Heavy Alloy) (텅스텐 중합금의 단열전단밴드 형성 및 국부화에 대한 연구)

  • Hwang, Doo-Son;Hong, Sung-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.6
    • /
    • pp.18-25
    • /
    • 2007
  • In a plastic metal forming of thermally rate-sensitive material, the localized shear band stems from evolution of a narrow region in which intensive plastic flow occurs. And it give rise to fatal fracture with plastic instability. The objectives of this study are to investigate the localization behavior by using numerical method and predict the failure for WHA(Tungsten Heavy Alloy). In this work, the implicit finite difference scheme is used because of the advantage about convergence and the numerical stability. This study is based on an analysed material with hardening as well as thermally softening behavior which includes isotropic strain hardening and observed the extension of localization within shear band according to material properties.

Catalytic hydrogenation-assisted preparation of melt spinnable pitches from petroleum residue for making mesophase pitch based carbon fibers

  • Lee, Dong Hun;Choi, Jisu;Oh, Young Se;Kim, Yoong Ahm;Yang, Kap Seung;Ryu, Ho Jin;Kim, Yong Jung
    • Carbon letters
    • /
    • v.24
    • /
    • pp.28-35
    • /
    • 2017
  • We demonstrated an effective way of preparing melt spinnable mesophase pitches via catalytic hydrogenation of petroleum residue (fluidized catalytic cracking-decant oil) and their subsequent thermal soaking. The mesophase pitches thus obtained were analyzed in terms of their viscosity, elemental composition, solubility, molecular weight, softening point and optical texture. We found that zeolite-induced catalytic hydrogenation under high hydrogen pressure contributed to a large variation in the properties of the pitches. As the hydrogen pressure increased, the C/H ratio decreased, and the solubility in n-hexane increased. The mesophase pitch with entirely anisotropic domains of flow texture exhibited good meltspinnability. The mesophase carbon fibers obtained from the catalytically hydrogenated petroleum residue showed moderate mechanical properties.

A Study of Localization with Material Properties Using Numerical Method (재료의 특징에 따른 국부화에 대한 수치해석적 연구)

  • 황두순;이병섭;이용성;윤수진;홍성인
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.395-403
    • /
    • 2000
  • Formation of Shear Band under the adiabatic condition is widely observed In the engineering materials during rapidly forming process lot a thermally rate-dependent material. The shear band stems from evolution of a narrow region in which an intensive plastic flow occurs. The shear band often plays a role of a precursor of the ductile fracture during a forming process. The objective of this study is to investigate the localization behavior using numerical method. In this work, the implicit finite difference scheme is employed due to the ease of convergence and the numerical stability It is noted that physical and mechanical properties of materials determine how the shear band is formed and then localized. Material properties can be characterized with inertia number dissipation number and diffusion number. It is observed that the dimensionless numbers effect on localization. Using a parametric study, comparison was made between CRS-1018 steel with WHA (tungsten heavy alloy). The deformation behavior of material in this study include an isotropic hardening as well as thermal softening. Moreover, this study suggests that a kinematic hardening constitutive relation be required to predict a more accurate strain level at a shear band.

  • PDF

Low Cycle Fatigue Behaviour of AISI 304L Austenitic Stainless Steel Weldment (AISI 304L 오오스테나이트 스테인레스 강 용접부 의 Low Cycle Fatigue 거동에 관한 연구)

  • 김환태;황선효;남수우
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.49-57
    • /
    • 1984
  • The influence of weld defect, residual stress and microstructure on the Low Cycle Fatigue(L. C. F.) behaviour of AISI 304L austenitic stainless steel weldment has been studied. The specimens were welded by shielded metal are welding process, post weld heat treated(PWHT) at 900.deg.C for 1.5hrs, and tested under total strain controlled condition at room temperature. The results of the experiment showed that weld defect affected the L.C.F. behaviour of weldment deleteriously compared to the residual stress or microstructure, and it reduced the L.C.F. life about 70-80%. The PWHT exhibited beneficial effect on the L.C.F. behaviour and increased the L.C.F. life about 120%. This enhancement by PWHT was attributed to the removal of residual stress and recovery of weld metal ductility. The cyclic stress flow of as welded specimens showed intermediate cyclic softening, whereas those of heat treated specimens showed continuous cyclic hardening, and this difference was explained in terms of the residual stress removal and dislocation behaviour. Scanning electron microscopy studies of fatigue fracture surface showed that weld defects of large size and near weld surface were detrimental to the L.C.F. behaviour of weldment.

  • PDF