• Title/Summary/Keyword: Flow Resistance Coefficient

Search Result 215, Processing Time 0.029 seconds

A Study on Flow Characteristics of Branch Type Sparger in Drain Tank for Depressurization (감압용 배수탱크내의 분기형 증기분사기의 유동특성에 관한 연구)

  • 김광추;박만흥;박경석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.356-367
    • /
    • 2001
  • A numerical analysis on branch type sparger in drain tank for depressurization is performed to investigate the flow characteristics due to the change of design factor. As the result of this study, sparger\\`s flow resistance coefficient(K) is 3.53 at the present design condition when engineering margin for surface roughness is considered as 20%, and flow ratio into branch pipe ($Q_s/Q_i$) is 0.41. The correlation for calculating flow resistance coefficients as design factor is presented. Flow resistance coefficient is increased as section area ratio of branch pipe for main pipe and outlet nozzle diameter of main pipe decreasing, but the effects of branch angle and inlet flow rate of main pipe are small. As the change rate of ($Q_s/Q_i$)becomes larger, the change rate of flow resistance coefficient increases. The rate of pressure loss has the largest change as section area ratio changing. The condition of maximum flow resistance in sparger is when the outlet nozzle diameter ratio of main pipe ($D_e/D_i$) is 0.167, the section area ratio ($A_s/A_i$) is 0.1 and the branch angle ($\alpha$) is 55^{\circ}$.

  • PDF

3-D Numerical Experiment for Estimation of Equivalent Resistance Coefficient due to Multi-piers : Effect of Transverse Intervals (상당저항계수식 산정을 위한 3차원 수치실험 : 횡방향 이격거리의 영향)

  • Kim, Hyeong-Seok;Choi, Jun-Woo;Ko, Kwang-Oh;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.3
    • /
    • pp.216-223
    • /
    • 2009
  • A transverse drag interaction coefficient of the equivalent resistance coefficient formula for square multi-piers higher than water depth and arranged with equal intervals was studied. From the assumption that the energy loss due to drag interaction according to transverse intervals of resistance bodies is essentially identical to the energy loss due to thick orifice according to porosities, the transverse drag interaction coefficient was derived by employing the orifice's energy loss coefficient. The equivalent resistance coefficient formula including the drag interaction coefficient was compared with the numerical experiments using FLOW-3D, the performance of which was verified by Kim et al.(2008) in the experimental condition with the multi-piers. The comparisons showed good agreement and thus, the equivalent resistance coefficient formula, which does not only consider frictional resistance but also consider the multi-piers' drag resistance varied according to the intervals in longitudinal or transverse direction, was verified.

Flow Characteristics and Optimal Design for RDT Sparger (원자로배수탱크내 Sparger에 대한 유동특성 및 최적설계)

  • Kim, Kwang-Chu;Park, Man-Heung;Park, Kyoung-Suk;Lee, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1390-1398
    • /
    • 1999
  • A numerical analysis for ROT sparger of PWR(Pressurized Water Reactor) is carried out. Computation is performed to investigate the flow characteristics as the change of design factor. As the result of this study, RDT sparger's flow resistance coefficient is K=3.53 at the present design condition if engineering mar&in is considered with 20%, and flow ratio into branch pipe is $Q_s/Q_i=0.41$. Velocity distribution at exit is not uniform because of separation in branch pipe. In the change of inlet flow rate and section area ratio of branch pipe for main pipe, flow resistance coefficient is increased as $Q_s/Q_i$ decreasing, but in the change of branch angle and outlet nozzle diameter of main pipe, flow resistance coefficient is decreased as $Q_s/Q_i$ decreasing. As the change rate of $Q_s/Q_i$ is the larger, the change rate of flow resistance coefficient is the larger. The change rate of pressure loss is the largest change as section area ratio changing. The optimal design condition of sparger is estimated as the outlet nozzle diameter ratio of main pipe is $D_s/D_i=0.333$, the section area ratio is $A_s/A_i=0.2$ and the branch angle is ${\alpha}=55^{\circ}$.

A Study on the Design of Liquid Flow Control Valves for the Pants and Ships(II) (플랜트 및 선박의 액체용 우량제어밸브 설계에 관한 연구(II))

  • 최순호;배윤영;김태한;한기남;주경인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.1-9
    • /
    • 1995
  • The processing paper has devoted to the theory of the flow equations, the basic derivative procedure, the meaning of a valve flow coefficient $C_v$, the valve Reynolds R$R_{ev}$ and its application for liquid control valves, which applicable under the condition of a non-critical flow and the case of piping geometry factor $F_p$=1.0. However there is no information on the effects of fittings, a critical flow and the flow resistance coefficient of a valve equivalent to that of pipe which is conveniently used in the piping design. Since the piping systems of plants or ships generally contain various fittings such as expanders and reducers due to different size between pipes and valves and there may occur a critical flow, that a mass flowrate is maintained to be constant, due to the pressure drop in a piping when a liquid is initially maintainder ar a saturated temperature or at nearby corresponding to upstream pressure, system designer should have a knowledge of the effect to flow due to fittings and the critical flow phenomenon of a liquid. This study is performed to inform system designers with the critical flow phenomenon of a liquid, a valve resistance coefficient, a valve geometry factor and their applications.

  • PDF

Effects of the Floor Pannel on Flows in a Vertical Laminar Flow Type Clean Room (수직 층류형 클린룸의 바닥 패널이 실내기류에 미치는 영향)

  • Kang, S.H.;Jeon, W.P.;Oh, M.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.4
    • /
    • pp.303-315
    • /
    • 1990
  • Uniformity of velocity is quite important design points of a vertical laminar flow type clean room. In the present paper, flows in a room with a bottom pannel are numerically simulated by using a low-Reynolds number $k-{\epsilon}$ model, and a new flow model of the pannel are suggested. Resistance coefficient of the pannel and size of the exhaust channel show considerable effects on flow pattern and uniformity of flow on the bottom. Reflection coefficient also has important roles. A possibility to obtain the uniform and unidirectional flow is tested by adjusting the distribution of resistance coefficient of the pannel. Such a numerical simulation of the flow will be a good method to get optimun design parameters.

  • PDF

Numerical Simulation of Hydraulic Jump (도수의 수치 모의)

  • Hwang, Seung-Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.749-762
    • /
    • 2023
  • A depth-integrated model with an approximate Riemann solver for flux computation of the shallow water equations was applied to hydraulic jump experiments. Due to the hydraulic jump, different flow regimes occur simultaneously in a single channel. Therefore, the Weisbach resistance coefficient, which reflects flow conditions rather than the Manning roughness coefficient that is independent of depth or flow, has been employed for flow resistance. Simulation results were in good agreement with experimental results, and it was confirmed that Manning coefficients converted from Weisbach coefficients were appropriately set in the supercritical and subcritical flow reaches, respectively. Limitations of the shallow water equations that rely on hydrostatic assumptions have been revealed in comparison with hydraulic jump experiments, highlighting the need for the introduction of a non-hydrostatic shallow-water flow model.

Evaluation of Flow Resistance Coefficient based on Physical Properties of Vegetation in Floodplains and Numerical Simulation of the Changes in Flow Characteristics (홍수터 식생의 물리적 특성을 고려한 흐름저항계수 산정 및 흐름특성 변화 모의)

  • Ji, Un;Jang, Eun-kyung;Ahn, Myeonghui;Bae, Inhyeok
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.212-222
    • /
    • 2021
  • In this study, the flow resistance coefficient was calculated considering the physical properties and distribution characteristics of floodplain vegetation, and the effect of floodplain vegetation distribution on flow characteristics was analyzed by reflecting it in a two-dimensional numerical simulation. The three-dimensional point clouds of vegetation acquired using ground lidar were analyzed to apply floodplain vegetation's physical properties to the existing formula for vegetation flow resistance calculation. The floodplain vegetation distribution in the modeling was divided into locally distributed and fully distributed conditions in the floodplain. As a result of the simulation of the study site, the flow resistance coefficient of floodplain vegetation was found to have a value of about five times or more compared to the flow resistance coefficient of the main channel bed when the design flood occurs based on Manning's n coefficient. Also, it affected the hydraulic characteristics in the main channel and floodplain.

Flow resistance of bottom trawl nets and scale effect in their model experiments (저층 트롤어구의 유수저항 특성 및 모형 실험시의 축척비 영향)

  • Kim, Dae-Jin;Kim, Dae-An;Kim, Tae-Ho;Shin, Hyeong-Ho;Jang, Duck-Jong;Cha, Bong-Jin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.4
    • /
    • pp.281-289
    • /
    • 2011
  • The purpose of this study is to identify the flow resistance of the bottom trawl net. The bottom trawl net being used in the training ship of Chonnam National University was selected as a full-scale net, and model nets such as 1/10, 1/25 and 1/50 of the actual net were made. Total resistance of the net part, the height of the net mouth and the flow resistance of components of the net such as wing, bag and cod-end part was measured, converted into full-scale and compared. Additionally, the model rule of Tauti (1934), which has been most frequently used in fishing net modeling experiments, was applied to interpret flow resistance and scale effect of model experiment was investigated. Presumed that the flow resistance R is $R=kS{\upsilon}^2$ against the flow velocity of each net ${\upsilon}$, resistance coefficient k was calculated by substituting R, ${\upsilon}$ and S of the net. From the result, it was found that k decreases exponentially when u increases which makes $k=c{\upsilon}^{-m}$. Whereas m of each net is ranged between 0.13-0.16 and there was not significant difference between nets. c does not show big difference in 1/10 and 1/25 model and the value itself was relatively bigger than in 1/50 model. The height of the net mouth of 1/25 and 1/50 model net h decreases exponentially according as ${\upsilon}$ increases to make $h=d{\upsilon}^{-n}$. Whereas d and n values were almost same in two nets. Additionally, when resistance of cod-end, wing and bag part in 1/25 and 1/50 model nets, both nets showed big resistance in bag part when flow is 1m/s as more than 60%. Wing and cod-end part showed almost same value or wing part had little bit larger value. On the other hand, when reviewing the reasons why both models showed difference in 1/50 model while c value against the resistance coefficient k did not show big difference in 1/10 and 1/25 model, it is inferred that the difference occurred not from material difference but from the difference in net size according to scale. It was judged that they are the scale effects concomitant to the model experiments.

Measurement of the Equivalent Resistance Coefficient for Multi-piers in Open Channel (개수로 다열기둥에 대한 상당저항계수의 측정)

  • Kwon, Kab Keun;Choi, Junwoo;Yoon, Sung Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.635-642
    • /
    • 2008
  • The influence of unsubmerged resistance bodies in a channel turbulence flow on energy loss was investigated by hydraulic experiments. Square-shaped multi-piers were used for unsubmerged structure or rigid vegetation in an open channel. In experimental channel flows multi-piers were arranged in double or single row along the channel direction, and mean-concept uniform elevations were attained and measured with a set of discharges and channel slopes. Applying the experimental results to the Manning equation, the equivalent resistance coefficient n, which implicates flow resistance and energy loss due to bottom friction as well as drag, was evaluated with varying the interval of piers and the uniform water depth. And the experimentally evaluated n values were compared with the semi-theoretical formula of the equivalent resistance coefficient derived from momentum analysis including a drag interaction coefficient. From the comparisons it was found that the interaction effect of piers on flow resistance was significant for the overall energy losses in a channel flow. The n values decrease when the interval of piers in flow-direction is less than about 2.2 times of the pier width. And it was also found that the n values increase with the 2/3 power of water depth in the theoretical formula, since the drag interaction coefficient was found to be mostly dependent on the interval of piers.

Numerical Experiment for the Estimation of Equivalent Resistance Coefficient for the Simulation of Inundation over Densely Populated Structures (구조물 밀집지역 범람수치모의를 위한 상당저항계수 산정 수치실험)

  • Kim, Hyeong-Seok;Choi, Jun-Woo;Ko, Kwang-Oh;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.532-539
    • /
    • 2008
  • Kwon et al.(2008) carried out a hydraulic experiment in order to evaluate Manning coefficient, which implicates flow resistance due to bottom friction as well as drag caused by the squared piers higher than water depth and arranged with equal intervals, under the flow condition with a constant drag coefficient, $Re>10^4$. And, based on the equation of equilibrium, they proposed a formula for the equivalent resistant coefficient including empirical drag interaction coefficient obtained by using the experimental results. In this study, the hydraulic experiment was simulated using FLOW-3D, a 3-dimensional computational fluid dynamic code. The computations were compared with the experiment results as well as the semi-theoretical formula, and the comparisons show a good agreement. From the agreement, it was confirmed that when flow resistance bodies were higher than water depth, Manning n value increases with 2/3 power of water depth as shown in the theoretical formula and that drag interaction coefficient was dominated by their intervals.