• Title/Summary/Keyword: Flow Quantity Efficiency

Search Result 89, Processing Time 0.02 seconds

A Study on the Removal of Low-Concentration Ozone by means of Activated Carbon (활성탄을 이용한 저농도 오존(OZONE)제거에 관한 연구)

  • 양원호;최경호;정문식
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.57-63
    • /
    • 1997
  • This study was carried out to find the adverse health effects of ozone by papers, the potential indoor sources of ozone by papers, and then the removal mechanism of ozone by experiments. The exposure of individuals to excessive levels of ozone both in the industrial and ambient environment is a continuing public health concern. Ozone indoors may play a role in generating secondary pollutants that may have adverse health effects. The removal efficiency of ozone was studied by (1) the effect of concentration on breakthrough time, (2) the effect of flow rate on breakthrough time, (3) the effect of adsorbent's weight on breakthrough time, (4) the effect of temperature on breakthrough time, (5) the application of Langmuir's isotherm equation in using activated carbon. The followings are the conclusions that were derived from this study. 1. In the effect of concentration on breakthrough time, the adsorption capacity of activated carbon was inversely proportional to ozone concentratuion (0.1, 0.2, 0.3 ppm). 2. In the effect of flow rate on breakthrough time, the service life of activated carbon was inversely proportional to flow rate (2, 8, 14l/min). 3. The difference in removal efficiency of ozone between weights(100 mg and 150 mg) was seen. And when weight of activated carbon was 100 mg and 150 mg, pressure loss was 4-5mmHg and 6-7mmHg, respectively. It is required to study relations among flow rate and adsorbent's weight and ventilation quantity, too. 4. Generally, Langmuir's equation, one of the oldest and most used frequently isotherm equation, applies to chemisorption. In case of ozone, when the weight of activated carbon was 70 mg and temperature 40, slope(1/a) was $6.25\times 10^{-1}$ and intercept(1/ab) was $1.9\times 10^{-4}$ (average r=0.94).

  • PDF

Comparative Study on Evaluating Standard Flow in Partially Gauged and Ungauged Watershed (부분계측 및 미계측 유역에서 기준유량 산정 방법 비교 연구)

  • Kim, Gyeonghoon;Kim, Jeongmin;Jeong, Hyunki;Im, Taehyo;Kim, Seongmin;Kim, Yongseok;Seo, Mijin
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.481-496
    • /
    • 2019
  • The Ministry of Environment has measured streamflow at eight-day intervals for the estimation of standard flow of the Total Maximum Daily Loads (TMDL) system. This study identified the availability of the partially measured the eight-day interval data for estimating standard flow and found the optimal extension techniques of standard flow. The study area was selected for the Nakbon-A watershed in the Nakdong River, and four streamflow record extension techniques of standard flow were considered: extension, percentile, drainagearea, and regional regression methods. The flow duration curve (FDC) using the eight-day interval streamflow data indicated very high Nash and Sutcliffe Efficiency (NSE) values above 90 % from FDC-II to FDC-VII compared to FDC-VIII, the standard FDC. This result demonstrates that FDC using daily data of three-six cumulative years could represent standard FDC fairly well. For the streamflow record extension techniques of standard flow, the percentile method was selected as the optimal alternative, showing the minimal difference from FDC-VIII. These results validate the availability of the eight-day interval streamflow data in the standard flow estimation and the application of extension techniques. It seems that these results could reduce the uncertainty of partially measured streamflow data for water quantity and quality management.

A Study on Backwashing of Granular Fiters Used in Water Treatment (정수처리를 위한 여과지의 역세척에 관한 연구)

  • Lee, Jung Taek;Ahn, Jong Ho;Choi, Keun Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.3
    • /
    • pp.61-72
    • /
    • 1999
  • To obtain the experimental data for design and operation of actual filtration processes, a sand filter and three kinds of dual media filters in pilot-plant scale were operated in this study. We analyzed the effect of filter medium composition on the filter performance and the effects of backwash water flow rates, length of stream line and air flow rate on the filter backwash efficiency. We also compared the efficiencies of the combined air-water backwashing and the water backwashing in dual media filters. As the backwash water flow rates or the length of stream line increased, the final turbidity of backwash water was decreased and the filtration duration time after backwash was increased. In the case of the combined air-water backwashing, the backwash water quantity needed for backwashing the dual media filters could be decreased. The total volume of filtered water for the dual media filters during filter run was over three times larger than that for the sand filter. The dual media filters could be operated at a high filtration rate of 360 m/day.

  • PDF

A Study on the Combustion Performance with Variation of Fuel Injection Hole Configuration at Supersonic Combustion (초음속 연소에서 연료 분사구 형상에 따른 연소성능 변화에 대한 실험적 연구)

  • Lee, Kyung-Jae;Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.19-26
    • /
    • 2011
  • In order to investigate the effect of fuel injection hole configuration within the scramjet combustor, experiment and quasi-one-dimensional analysis was performed. And the results were compared with experiment and analysis result which were performed in 2008 with same facility and test condition. Fuel injection hole size was decreased and quantity was increased. However the depth of fuel penetration and flow quantity of fuel were maintained. As a test result, combustion performance was increased significantly with no-cavity injector and slightly with plain-cavity. However, combustion performance with zigzag-cavity was decreased.

The Thermal Environmental Characteristics for Task-Ambient Air-Conditioning System in Heating Condition (Task-Ambient 공조시스템의 난방시 열환경 특성에 관한 실험적 연구)

  • 이정재;윤창오;정광섭;한화택;박영철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2001
  • Recently, the requirement of healthier and more comfortable environment makes the zoning domain more details. However, it has limitation to satisfy the thermal comfort of an individual because of the effect of the heat generation from the OA machine and partitions in indoor room. In this paper, we certify the validity of task-ambient air-conditioning system that has been developed as a new concept of personal air-conditioning system, and specify design strategies for more efficient task-ambient air-conditioning system with a specification guided by indoor environmental characteristics analyzed through experiment data. In this experiment, we changed the temperature and the quantity of air-flow in task domain to understand characteristic behavior of the thermal environment and investigate the possibility of energy saving. The experiment result is that the environment of the task area depends on the condition of supply air, and though the airflow of the low temperature is supplied with the ambient area, the personal environment and the efficiency of energy saving are improved by controlling the temperature and the quantity of the air shot around the task domain.

  • PDF

Comparison of physical cleaning applied to chemical backwashing of wastewater reuse membrane system (하수재이용 막여과 공정에서 약품 역세에서의 물리세정 영향 비교 평가)

  • Lee, Chang-Ha;Kim, Young-Hoon;Jeon, Min-Jung;Lee, Yong-Soo;Jang, Am;Kim Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.981-987
    • /
    • 2011
  • Biologically treated water contains a large quantity of organic matters and microorganisms which can cause various problems to membrane. The membrane fouling occurred by these reasons is hard to control by single physical cleaning. This study analyzes the efficiency of aeration with chemical backwashing and foulants removal during chemical backwashing. The cleaning efficiency improves when the chemical concentration is high and the contact time of chemical is long. Chemical backwashing with aeration shows exceptional cleaning efficiency which leads the physical cleaning is required during chemical backwashing since it forms flow inside the membrane submerged tank. From the foulants removal analysis, the particles such as turbidity and TOC removal rate increase when the aeration is applied. Dissolved matter of DOC and UV254 removal is dependent on higher chemical concentration. According to FTIR analysis, one of major foulants, the polysaccharide is controlled by the chemical backwashing with aeration condition.

Filter- and Denuder-Based Organic Carbon Correction for Positive Sampling Artifacts

  • Hwang, InJo;Na, Kwangsam
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.107-113
    • /
    • 2017
  • This study describes (1) the impact of positive sampling artifacts caused by not only a filter-based sampling, but also a denuder-based sampling in the determination of particle-phase organic carbon (POC), (2) the effect of sample flow rate on positive artifacts, and (3) an optimum flow rate that provides a minimized negative sampling artifact for the denuder-based sampling method. To achieve the goals of this study, four different sampling media combinations were employed: (1) Quartz filter-alone (Q-alone), (2) quartz filter behind quartz-fiber filter (QBQ), (3) quartz filter and quartz filter behind Teflon filter (Q-QBT), and (4) quartz filter behind carbon-based denuder (Denuder-Q). The measurement of ambient POC was carried out in an urban area. In addition, to determine gas-phase OC (GOC) removal efficiency of the denuder, a Teflon filter and a quartz filter were deployed upstream and downstream of the denuder, respectively with varying sample flow rates: 5, 10, 20, and 30 LPM. It was found that Q-alone sampling configuration showed a higher POC than QBQ, Q-QBT, and Denuder-Q by 12%, 28%, and 23%, respectively at a sample flow rate of 20 LPM due to no correction for positive artifact caused by adsorption of GOC onto the filter. A lower quantity of GOC was collected from the backup quartz filter on QBQ than that from Q-QBT. This was because GOC was not in equilibrium with that adsorbed on the front quartz filter of QBQ during the sampling period. It is observed that the loss of particle number and mass across the denuder increases with decreasing sample flow rate. The contribution o f positive arti facts to POC decreased with increasing sample flow rate, showing 29%, 25%, and 22% for 10, 20, and 30 LPM, respectively. The 20 LPM turns out to be the optimum sample flow rate for both filter and denuder-based POC sampling.

An Experimental Study on the Performance Evaluation of a Jet Pump for the Smart UAV Fuel System (스마트무인기 연료시스템 연료이송 제트펌프의 성능평가에 관한 실험적 연구)

  • Lee, Yoon-Kwon;Kim, Eui-Soo;Park, Sul-Hye;Lee, Chang-Ho;Lee, Soo-Chul;Choi, Hee-Joo;Lee, Jee-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1143-1150
    • /
    • 2007
  • The fuel transfer characteristics of the jet pump between fuel tanks, which is applied in the smart UAV fuel supply system, were experimentally investigated. The operating conditions of the jet pump were setup to meet the engine requirement according to mission profile, and the jet pump performance was evaluated at those conditions. The pressure ratio and the efficiency of the jet pump were measured with the variation of flow ratio. In addition, the area ratio was taken into the consideration to examine the effect on the jet pump performance. From the evaluation results, the jet pump met the fundamental requirement to transfer fuel with the flow ratio of 2.23. In the case of the jet pump that is focused on the fuel transfer quantity rather than its efficiency, the flow ratio would be adjusted through the variation of area ratio of the jet pump within the permitted limit of pressure ratio.

Abatement of CF4 Using RF Plasma with Annular Shape Electrodes Operating at Low Pressure (환상형상 전극구조를 갖는 저압 RF plasma를 이용한 CF4 제거)

  • Lee, Jae-Ok;Hur, Min;Kim, Kwan-Tae;Lee, Dae-Hoon;Song, Young-Hoon;Lee, Sang-Yun;Noh, Myung-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.690-696
    • /
    • 2010
  • Abatement of perfluorocompounds (PFCs) used in semiconductor and display industries has received an attention due to the increasingly stricter regulation on their emission. In order to meet this circumstance, we have developed a radio frequency (RF) driven plasma reactor with multiple annular shaped electrodes, characterized by an easy installment between a processing chamber and a vacuum pump. Abatement experiment has been performed with respect to $CF_4$, a representative PFCs widely used in the plasma etching process, by varying the power, $CF_4$ and $O_2$ flow rates, $CF_4$ concentration, and pressure. The influence of these variables on the $CF_4$ abatement was analyzed and discussed in terms of the destruction & removal efficiency (DRE), measured with a Fourier transform infrared (FTIR) spectrometer. The results revealed that DRE was enhanced with the increase in the discharge power and pressure, but dropped with the $CF_4$ flow rate and concentration. The addition of small quantity of $O_2$ lead to the improvement of DRE, which, however, leveled off and then decreased with $O_2$ flow rate.

A Development of Test Method on the Energy Consumption Efficiency of Domestic Gas Boiler below 70 kW (70 kW 이하 가정용 가스보일러 에너지소비효율 실험방법 개발)

  • Park, Chanil;Kim, Laehyun
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.73-82
    • /
    • 2016
  • The energy consumption efficiency in a variety of operational test mode was considered for domestic gas boiler below 70 kW. The energy efficiency test carried out in the experimental conditions similar to the actual operation status was analyzed and compared with the current Korean efficiency test method. Four types of test modes for each boiler(Non-condensing and condensing boiler) were carried out in the condition of laboratory mode(full load, steady state) and actual operating mode. Futhermore divided into two operational status for each of these, it was applied by maximum gas consumption and consumer sales conditions. Test equipment has the function referred to gas boiler standards, such as KS or European standard EN. The equipment should be continuously measured and record the measuring factors which are the flow volume of gas and water, laboratory temperature, water flow volume for heating, return water volume after heating and quantity of the exhaust gases(CO, NO, $NO_2$). The experimental results were found that non-condensing boiler efficiency of laboratory mode is about 10% higher than that of actual mode. In case of condensing boiler, the efficiency of laboratory condition is about 20% higher than that of the actual using conditions. I suggest that the government will gradually take the efficiency test method considering the actual conditions.