• 제목/요약/키워드: Flow Patterns

Search Result 1,701, Processing Time 0.029 seconds

A study on the relationship between the symptom of Shanghanlun(傷寒論) and the Nutritive-Gi(營氣) (『상한론(傷寒論)』 병증(病症)과 영기(營氣)의 관계에 대한 연구(硏究))

  • Bang, Jung-kyun
    • Journal of Korean Medical classics
    • /
    • v.30 no.1
    • /
    • pp.211-221
    • /
    • 2017
  • Objectives : The practices of Wei-qi and Nutritive-qi are generally divided into external Mai and internal Mai. However, they are closely interrelated and practiced together. While taking these aspects into consideration, this paper attempts to make interpretations in relation with Nutritive-qi the disease pathogens that appear in Shanghanlun's disease symptoms. Methods : Using the practice and function of Nutritive-qi described in Huangdineijing, the paper shall make interpretations for the patterns of Mawhangtang, patterns of Gaejitang, and the pathologies of pain, oedema, and nosebleed as described in Shanghanlun. Results & Conclusions : The pain from the patterns of Gaejitang differ from that of the patterns of Mawhangtang. First, the pain from the the patterns of Gaejitang cannot be the main symptom. Even if there is a symptom of pain, it's severity is not serious. Second, the pain from the patterns of Gaejiang takes the form of stiffness, and not general bodily pain. The reason for this stiffness is because of the emptiness of Wei-qi that leads to the congestion of Nutritive-qi which in turn causes the lack of qi and blood flow in muscula area such as abdomins. The symptom of oedema where one's body becomes swollen comes from a number of pathogens. First, the flow of meridian becomes hindered due to external dampness, a character which tends to be adhesive when added with humidty, and this results in the blockage of water qi which then causes the coagulation of nutritive blood. Second, when toxic heat is repressed and blocked within the lesser-yang channel, lesser-yang meridian stops working, which causes nutritive blood to clog at the front and back of ears since lesser-yang channel flows through that portion of body. Third, although oedema is not specifically mentioned in the sentences, but there exists the patterns of Daechungyongtang where water lumps are formed due to the accumulation and blockage of watery dampness. The patterns of Daechungyongtang is cuased when meridian is hindered from externally discharging body fluid due to a problem with meridian that blocks the fumigated internal heat which turns into bodily fluid from being discharged externally.

Characteristics of Water Droplets in Gasoline Pipe Flow (가솔린 송유관에서의 수액적 거동 특성)

  • Kim, J.H.;Kim, S.G.;Bae, C.;Sheen, D.H.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • Liquid fossil fuel contaminated by water can cause trouble in the combustion processes and affect the endurance of a combustion system. Using an optical sensor to monitor the water content instantaneously in a fuel pipeline is an effective means of controlling the fuel quality in a combustion system. In two component liquid flows of oil and water, the flow pattern and characteristics of water droplets are changed with various flow conditions. Additionally, the light scattering of the optical sensor measuring the water content is also dependent on the flow patterns and droplet characteristics. Therefore, it is important to investigate the detailed behavior of water droplets in the pipeline of the fuel transportation system. In this study, the flow patterns and characteristics of water droplets in the turbulent pipe flow of two component liquids of gasoline and water were investigated using optical measurements. The dispersion of water droplets in the gasoline flow was visualized, and the size and velocity distributions of water droplets were simultaneously measured by the phase Doppler technique. The Reynolds number of the gasoline pipe flow varied in the range of $4{\times}10^{4}\;to\;1{\times}10^{3}$, and the water content varied in the range of 50 ppm to 300 ppm. The water droplets were spherical and dispersed homogeneously in all variables of this experiment. The velocity of water droplets was not dependent on the droplet size and the mean velocity of droplets was equal to that of the gasoline flow. The mean diameter of water droplets decreased and the number density increased with the Reynolds number of the gasoline flow.

  • PDF

An Experimental Study of Flow and Dispersion Characteristics in Meandering Channel (사행수로에서의 유속 및 분산특성에 관한 실험적 연구)

  • Park, Sung-Won;Seo, Il-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.799-802
    • /
    • 2008
  • General behaviors based on hydraulic characteristics of natural streams and channels have been recently analyzed and developed via various numerical models. However in the states of natural hydraulics, an experimental research must be performed simultaneously with the mathematical analysis due to effects of hydraulic properties such as meander, sediment, and so on. In this study based on 2-D advection-dispersion equation, flow and tracer experiments were performed in the S-curved meandering laboratory channel with a rectangular cross-section. The channel was equipped with instrument carriages which was equipped with an auto-traversing system to be used with velocity measuring sensors throughout the depth and breadth of the flow field. To measure concentration distribution of the salt solution was adjusted to that of the flume water by adding methanol and a red dye (KMnO4) was added to aid the visualization of the tracer cloud, the tracer was instantaneously injected into the flow as a full-depth vertical line source by the instantaneous injector and the initial concentration of the tracer was 100,000 mg/l. The secondary current as well as the primary flow pattern was analyzed to investigate the flow distribution in the meandering channels. The velocity distribution of the primary flow for all cases skewed toward the inner bank at the first bend, and was almost symmetric at the crossovers, and then shifted toward the inner bank again at the next alternating bend. Thus, one can clearly notice that the maximum velocity occurs taking the shortest course along the channel, irrespective of the flow conditions. The result of the tracer tests shows that pollutant clouds are spreading following the maximum velocity lines in each cases with various mixing patterns like superposition, separation, and stagnation of pollutant clouds. Flow characteristics in each cases performed in this study can be compared with tracer dispersion characteristics with using evaluation of longitudinal and transverse dispersion coefficients(LDC, TDC). As expected, LDC and TDC in meandering parts have been evaluated with increasing distribution and straight parts have effected to evaluate minimum of LDC and TDC due to symmetric flow patterns and attenuations of secondary flow.

  • PDF

Numerical Investigation of Anti-Diffusion Source Term for Free-Surface Wave Flow

  • Park, Sunho;Lee, Heebum;Rhee, Shin Hyung
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.48-60
    • /
    • 2016
  • Accurate simulation of free-surface wave flows around a ship is very important for better hull-form design. In this paper, a computational fluid dynamics (CFD) code which is based on the open source libraries, OpenFOAM, was developed to predict the wave patterns around a ship. Additional anti-diffusion source term for minimizing a numerical diffusion, which was caused by convection differencing scheme, was considered in the volume-fraction transport equation. The influence of the anti-diffusion source term was tested by applying it to free-surface wave flow around the Wigley and KCS model ships. In results, the wave patterns and hull wave profiles of the Wigley and KCS model ships for various anti-diffusion coefficients showed quite close patterns. While, the band width of the water volume-fraction values between 0.1 to 0.9 at the Wigley and KCS model hull surfaces was narrowed by considering the anti-diffusion term. From the results, anti-diffusion source term decreased free-surface smearing.

Numerical and Experimental Studies of Dual Subsea Pipelines in Trench

  • Jo, Chul H.;Shin, Young S.;Min, Kyoung H.
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.2
    • /
    • pp.12-22
    • /
    • 2002
  • Offshore pipelines play an important role in the transportation of gas, oil, water and oil products. It is common to have a group of pipelines in the oil and gas field. To reduce the installation cost and time, dual pipelines are designed. There are great advantages in the installation of dual pipelines over two separate single lines. It can greatly reduce the cost for trench, back-filling and installation. However the installation of dual pipelines often requires technical challenges. Pipelines should be placed to be stable against external loadings during installation and design life period. Dual pipelines in trench can reduce the influence of external forces. To investigate the flow patterns and forces as trench depth and slope changes, number of experiments are conducted with PIV(Particle Image Velocimetry) equipment in a Circulating Water Channel. Numerical approaches to simulate experimental conditions are also made to compare with experimental results. The velocity fields around dual pipelines in trench are investigated and analysed. Comparison of both results show similar patterns of flow around pipelines. It is proved that the trench depth contributes significantly on hydrodynamic stability. The trench slope also affects the pipeline stability. The results can be applied in the stability design of dual pipelines in trench section. The complex flow patterns can be effectively linked in the understanding of fluid motions around multi-circular bodies in trench.

A study on 2-D wake flow control by acoustic excitation (음파 가진을 이용한 2차원 웨이크 유동 제어에 관한 연구)

  • Kim, Hyeon-Jin;Kim, Jae-Ho;Kim, Myeong-Gyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.860-873
    • /
    • 1998
  • In a low speed open-type wind tunnel, a group of parallel wakes downstream of two dimensional grid model consisting of several circular cylinders were experimentally investigated to study the response of the wake flows to the acoustic excitation, in hoping to promote the understanding of the underlying mechanism behind the gross flow change due to artificial excitation. In the unexcited wake flows, the development of the individual wakes behind cylinders was almost uniform for the ratio of the spacing to the cylinder diameter of s/d.geq.1.5. For smaller s/d, however, the jet streams issued through the gaps between the cylinders became biased in one side and the cylinders had wakes of different sizes. At s/d=1.25, the gap flow directions change in time, leading to unstable wake patterns. Further reduction in s/d made this unstable flip-flopping of the jets stable. The most effective excitation frequency was found to be in the Strouhal number range of St=0.5-0.6. This frequency was related to the vortex shedding. At s/d=1.75, the excitation frequency was 2 or 4 times the vortex shedding frequency. When the flow was excited at this frequency, the vortex sheddings were energized, and pairings between neighboring vortices were generated. Also, the merging process between individual wakes was accelerated. The unstable and unbalanced wake patterns at s/d=2.15 were made stable and balanced. The unstable and unbalanced wake patterns at s/d=2.15 were made stable and balanced. For smaller spacing of s/d .leq,1.0, the acoustic excitation became less effective in controlling the flow.

Transcranial Doppler Ultrasonography Monitoring during Head-up Tilt Test in Patients with Recurrent Syncope and Presyncope (반복적인 실신 및 실신전환자의 기립경사 검사시 경두개 초음파 감시)

  • Cho, Soo-Jin;Lee, Kwang-Ho;Chung, Chin-Sang
    • Annals of Clinical Neurophysiology
    • /
    • v.1 no.1
    • /
    • pp.64-69
    • /
    • 1999
  • Background : Syncope was defined as transient loss of consciousness and postural tone. The mechanisms of changes in cerebral hemodynamics during syncope have not been fully evaluated. Transcranial Doppler Ultrasonography can continuously monitor the changes in cerebral hemodynamics during head-up tilt (HUT). TCD could reveal the different patterns of changes in cerebral hemodynamics during syncope. Syncope without hypotension or bradycardia could be detected by TCD. We investigated the changes in cerebral blood flow velocity during HUT using TCD in 33 patients with a history of recurrent syncope or presyncope of unknown origin. Methods & Results : The positive responses were defined as presyncope or syncope with hypotension, bradycardia, or both. During HUT without isoproterenol infusion, there were a $86{\pm}23%$ drop in DV and a $41{\pm}34%$ drop in SV in 5 patients with positive reponses, and mean changes in those were less than 10% in patients with negative reponses (p=.00, p=.00). During HUT with isoproterenol infusion, TCD showed a $80{\pm}18%$ drop in diastolic velocity in 14 patients with positive reponses, and a $47{\pm}10%$ drop in that in patients with negative reponses (p=.00), however the change in systolic velocity did not differ. TCD showed three patterns during positive responses; loss of all flow, loss of end diastolic flow, and a decrease in diastolic velocity. Loss of consciousness occurred in the patients with loss of all flow or end-diastolic flow during positive reponses. Conclusions : TCD shows different patterns of changes in cerebral hemodynamics during HUT. TCD can be used to investigate the pathophysiology of neurocardiogenic syncope.

  • PDF

An Experimental Study on the Cause of Signal Inhomogeneity for Magnetic Resonance Angiography Using Phantom Model of Anterior Communicating(A-com) Artery (전교통동맥 모형을 이용한 자기공명혈관촬영술의 신호 불균일에 관한 실험적 연구)

  • Yoo, Beong-Gyu;Chung, Tae-Sub
    • Journal of radiological science and technology
    • /
    • v.25 no.1
    • /
    • pp.55-62
    • /
    • 2002
  • Aneurysm-mimicking findings were frequently visualized due to hemodynamical causes of dephasing effects around area of A-com artery during magnetic resonance angiography(MRA) and these kind of phenomena have not been clearly known yet. We investigated the hemodynamical patterns of dephasing effect around area of the A-com artery that might be a cause of false intracranial aneurysms on MRA. For experimental study, We used hand-made silicon phantoms of the asymmetric A-com artery as like a bifurcation configuration. In a closed circulatory system with UHDC computer driven cardiac pump system. MRA and fast digital subfraction angiography(DSA) involved the use of these phantoms. Flow patterns were evaluated with axial and coronal imaging of MRA(2D-TOF, 3D-TOF) and DSA of Phantoms constructed from an automated closed-type circulatory system filled with glycerol solution [circulation fluid(glycerol:water = 1:1.4)]. These findings were then compared with those obtained from computational fluid dynamic(CFD) for inter-experimental correlation study. Imaging findings of MRA, DSA and CFD on inflow zone according to the following: a) MRA demonstrated high signal intensity zone as inflow zone on silicon phantom; b) Patterns of DSA were well matched with MRA on trajectory of inflow zone; and c) CFD were well matched with MRA on the pattern of main flow. Imaging findings of MRA. DSA and CFD on turbulent flow zone according to the following: a) MRA demonstrated hyposignal intensity zone at shoulder and axillar zone of main inflow; b) DSA delineated prominent vortex flow at the same area. The hemodynamical causes of signal defect, which could Induce the false aneurysm on MRA, turned out to be dephasing effects at axilla area of bifurcation from turbulent flow as the results of MRA, DSA and CFD.

  • PDF

Lubrication Properties of Various Pattern Shapes on Rough Surfaces Considering Asperity Contact (돌기접촉을 고려한 거친 표면 위 다양한 패턴 형상에 따른 윤활 특성 연구)

  • Kim, Mi-Ru;Lee, Seung-Jun;Jeong, Jae-Ho;Lee, Deug-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.39-46
    • /
    • 2018
  • Two surfaces that have relative motion show different characteristics according to surface roughness or surface patterns in all lubrication areas. For two rough surfaces with mixed lubrication, this paper proposes a new approach that includes the contact characteristics of the surfaces and a probabilistic method for a numerical analysis of lubrication. As the contact area of the two surfaces changes according to the loading conditions, asperity contact is very important. An average flow model developed by Patir-Cheng is central to the study of lubrication for rough surfaces. This average flow model also refers to a multi-asperity contact model for deriving a modified Reynolds equation and calculating the lubricant characteristics of a bearing surface with random roughness during fluid flow. Based on the average flow model, this paper carried out a numerical analysis of lubrication using a contact model by considering a load change made by the actual contact of asperities between two surfaces. Lubrication properties show different characteristics according to the surface patterns. This study modeled various geometric surface patterns and calculated the characteristics of lubrication.

Designing dam operations for better aquatic species' habitat and economic outcomes in a regulated river

  • Kang, Hyeongsik;Choi, Byungwoong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.spc2
    • /
    • pp.823-833
    • /
    • 2019
  • This study presents the impact of natural flow patterns on downstream fish habitat and economic outcomes in the Dal Stream, Korea. The study reach is 3.35 km long, located downstream form the Goesan Dam. To assess such impact, this study performed physical habitat simulations. The River2D model was used for the computation of the flow and the HSI model for the habitat simulation. Two physical habitat variables, flow depth and velocity, were used. The Zacco platypus, Zacco temminckii, Coreoleuciscus splendidus, and Opsariichthys bidens were selected as the target species in the study area. Using the building block approach (BBA), the scenarios for the hydropeaking mitigation were presented. Scenario 1 and scenario 2 were proposed by using the magnitude - duration concept and averaged the hydrologic data over the each month, respectively. Simulation results indicated that the scenarios effects significantly increased by about 18.6% for the weighted usable area (WUA). In addition, hydroelectric power benefits with both scenarios were investigated. It was revealed that the change of storing and releasing water decreased by about 27% for hydroelectric power benefits. In order to increase economic benefits, the scenario was modified with the discharges corresponding to the hydropeaking condition except the flood season. As a result, the hydroelectric power benefits were almost the same, however the aquatic habitat for the target species increased by about 5%. The change of dam re-operations through natural flow patterns provides an opportunity to minimize environmental and economic benefits in order to balance water management.