• Title/Summary/Keyword: Flow Measurements

Search Result 1,813, Processing Time 0.024 seconds

Bulk Flow Pulsations and Film Cooling from Two Rows of Staggered Holes : Effect of Blowing Ratios (주유동의 맥동과 엇갈린 2열 분사홀로부터의 막냉각 : 분사비의 영향)

  • Sohn, Dong Kee;Lee, Joon Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1195-1207
    • /
    • 1998
  • Periodic pulsations in the static pressure near turbine surfaces as blade rows move relative to each other is one of the important sources of turbine unsteadiness. The present experiment aims to investigate the effect of the static pressure pulsations on the interaction of film coolant flows from two rows of staggered holes with mainstream and its effect on film cooling heat transfer. Potential flow pulsations are generated by the rotating shutter mechanism installed downstream of the test section, The free-stream Strouhal number based on the boundary layer thickness is in the range of 0.033 - 0.33, and the amplitude of about 10-20%. Measured are time-averaged and phase-averaged velocity variations, pressure variations and temperature distributions of the flow field. Experimental conditions are identified by boundary layer measurements. Injectant behavior is characterized by the measurements of unsteady pressure in the plenum chamber and free-stream static pressure. The film cooling effectiveness is evaluated from the insulated wall temperature measurement. It has been found that bulk flow pulsation provides very large diffusion of the injectants and the effectiveness is significantly reduced by the flow pulsations.

Research on Air Flow Rate Test Method for Blower System (송풍 시스템의 공기유량측정 방법에 관한 연구)

  • Lee, Jun-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.55-60
    • /
    • 2022
  • This study conducted the measurements of air flow rate for blower systems with experiment and numerical. A new airflow rate test method is suggested, with which it is possible to accurate measurements and calculate the air flow rate for blower systems. The blower(axial fan) is an industrial fluid machine device that supplies a large amount of air by driving an impeller with an electric motor, and it is widely used throughout the industry such as steel, power plant, chemical, semiconductor, LC D, food, and cement. The airflow from the blower is for exchanging the heat in the cooling unit or heat exchanger. The temperature of coolants and hydraulic oil primarily depends on the amount of airflow rate through the cooling package so its accurate estimation is very important. Moreover, it required a larger investment in time and cost since it could not be executed until the system is actually made. Therefore, this research is intended to examine the phenomenon of air flow pattern when testing air flow rate, suggested new test method, and show the result of the validation test.

An Experimental Study on Shallow Water Effect in Slamming (천수에서의 슬래밍 현상에 대한 실험적 연구)

  • Kang, Hyo-Dong;Oh, Seung-Hoon;Kwon, Sun-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.60-66
    • /
    • 2009
  • This study presents an experimental investigation of the shallow water impact of a box type structure. The analysis was done based on the video images captured by a high speed camera, the flow field obtained by PIV (Particle Image Velocimetry), and pressure measurements in the divided region. The video images showed quite good agreement with the description given by Korobkin. The PIV measurements of the velocity field provided a clear view of the flow pattern for all three stages. The pressure was measured at the bottom of the tank with strain gauge type pressure gauges. The pressure measurements showed the characteristics of divided regions.

Resistance Factors and Relationships for Measurements in Fluvial Rivers (충적하천 실측자료의 저항계수와 관계식)

  • Lee, Jong-Seok;Julien, Pierre Y.
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.7
    • /
    • pp.445-452
    • /
    • 2012
  • This study is used to analyze the distribution of resistance factors and the relationships of flow resistance with the field measurements which consist of the total 2,604 rivers for 1,865 bed material in natural channels and 739 vegetation in vegetated channels. Resistance factor relationships and distribution range of Manning roughness coefficients and Darcy-Weisbach friction coefficients by the regression analysis are derived from the power law form as a function of flow discharge and friction slope with bed materials and vegetations in natural and vegetated rivers, respectively.

On-line Monitoring of Glucose and Acetate by Flow-Injection Analysis in Escherichia coli Fermentation Process (대장균 발효공정에서 흐름주입분석을 이용한 글루코스와 초산의 온라인 모니터링)

  • 이종일
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.244-250
    • /
    • 1998
  • Flow-injection analysis (FIA) for on-line monitoring of glucose and acetate are described and employed in E.coli fermentation process. Glucose oxidase (GOD) for the detection of glucose is immobilized on epoxy polymer support, which is packed in a small cartirdge, and applied to a GOD-FIA system. The detection of acetate is based on the inhibition of acetate to the oxidation of sarcosine by sarcosine oxidase (SOD). SOD is also immobilized on epoxy polymer support and used for a SOD-FIA system. GOD-FIA system is characterized as well as SOD-FIA system by the investigation of the effects of pH, temperature and metabolites in samples on the peak height. GOD-FIA and SOD-FIA systems were also applied for on-line On-line measurements buy FIA measurements by FIA were in god agreement with off-line measurements.

  • PDF

Micro- PIV Measurements of Microchannel Flows and Related Problems (마이크로 채널 내부 유동의 Micro-PIV측정과 제반 문제점)

  • Lee Sang-Joon;Kim Guk-bae
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.79-84
    • /
    • 2002
  • Most microfluidic devices such as heat sinks for cooling micro-chips, DNA chip, Lab-On-Chip, and micro pumps etc. have microchannels of various size. Therefore, the design of practical microfluidics demands detail information on flow structure inside the microchannels. However, detail velocity field measurements are rare and difficult to carry out. In addition, as the microfluidics expands, accurate understanding of microscale transport phenomena becomes very important. In this research, micro-PIV system was employed to measure the velocity fields of flow inside a micro-channel. We carried out PIV measurements for several microchannels with varying channels width, inlet and outlet shape, filters, CCD camera and ICCD camera, etc. For effective composition of micro-PIV system, first of all, it is essential to understand optics related with micro-imaging of particles and the particle dynamics encountered in micro-scale channel flows. In addition, it is necessary to find the optimal condition for given experimental environment and? micro-scale flow to be investigated. The problems encountered in measuring velocity field of micro-channel flows are discussed in this paper.

  • PDF

The Efficiency of Voice Therapy for the Patients with Vocal Nodules (성대 결절 환자를 대상으로 한 음성치료의 효과)

  • 표화영;김명상;최홍식
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.8 no.2
    • /
    • pp.178-184
    • /
    • 1997
  • Vocal nodule due to vocal hyperfunction is one of the representative chronic diseases of vocal folds, and it can be cured by surgical movement, and/or voice therapy. The present study is, focusing on the latter, to compare the acoustic and aerodynamic results of the pretreatment with those of posttreatment, and then to investigate the objective date on the efficiency of the voice therapy for the patients with vocal nodules. 11 females(age : 7-49) and 5 males(age : 8-40), total 16 patients wi vocal nodules treated by voice therapy were participated as subjects. Six measurements and comparisons of pretreatment and posttreatment of the results were performed : litter, shimmer, and noise-to-harmonic ratio as acoustic analyses ; maximum phonation time, mean flow rate, and the subtraction of mean flow rate from maximum flow rate as aerodynamic analyses. As a result, 14 of 16 subjects showed improvement at more than 4 of 6 measurements, and in group data, every measurements of posttreatment was improved significantly than the pretreatment. On the whole, the improvement of aerodynamic aspects was more statistically significant than that of acoustic ones.

  • PDF

Measurements of the Vibrational Power Flow in Structure Beam by Using the Structural Intensity Method (Structural Intensity 법을 이용한 구조체의 진동전달량 측정)

  • ;Tichy, Jiri
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.231-238
    • /
    • 1994
  • This paper presents an experimental method to find the vibrational transmission characteristics of structures by using the structural intensity method which is used as the important techniques of active vibration control method. Experimental results are obtained from measurements performed on a structure beam by 2, 3 and 4 position linear accelerometr array (2, 3 and 4 structural intensity : 2, 3 and 4 S.I.) methods at near and farfield conditions. These results are compared with the measurement values of conventional power flow measurement method called input power measurement in order to verify the accuracy of structural intensity methods. To minimize the errors associated with 2, 3 and 4 S.I. methods, the measurement locations were selected by the result of modal analysis and the averaged data by the inter-change of accelerometer array was utilized. In 3 and 4 S.I. methods measured wavenumber instead of theoretical wavenumber was used. This paper shows that measurements of bending wave power flow by using 2, 3 and 4 S.I. methods can give accurate values under general field conditions in structural beam and the accuracy of 2, 3 S.I. methods is higher than 4 S.I. methods. Finally, 2 position linear accelerometer array method is suggested as the practical structural intensity technique.

  • PDF

The Technique and Normal Values of Transcranial Doppler Ultrasonography(TCD) (Transcranial Doppler Ultrasonography (TCD)의 시행 방법 및 정상치)

  • Sohn, Young Ho
    • Annals of Clinical Neurophysiology
    • /
    • v.1 no.1
    • /
    • pp.39-46
    • /
    • 1999
  • Transcranial doppler ultrasonography (TCD) is a new, non-invasive and easily applicable method to evaluate cerebral hemodynamics. Last 10 years, its use in Korea has been dramatically expanded, but the qualification of TCD laboratory has yet to be settled. Since duplex sonography is seldom used in Korea, we have to depend totally on TCD to evaluate cerebral hemodynamic changes. Thus, all of the available data from every detectabler cerebral arteries has to be obtained for accurate interpretation of TCD measurements. Moreover, flow direction and wave form should be concerned in addition to the flow velocity. In this article, I present technique to measure the anterior, meddle and posterior cerebral arteries, the internal carotid artery siphon and at cervical level, and the vertebral and the basilar artery, and normal values for these measurements which is essential for the adequate interpretation.

  • PDF

Size Measurements of Droplets Entrained in a Stagnant Bubbling Liquid Column

  • Jeong, Hae-Yong;No, Hee-Cheon;Song, Chul-Hwa;Chung, Moon-Ki
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.254-259
    • /
    • 1996
  • Phase Doppler particle analyze. (PDPA) is a instrument which can be used to obtain simultaneous size and velocity measurements in a multiphase flow. In this study, the size of the water droplets entrained from a bubbling surface of a stagnant liquid column is measured by PDPA with a specially designed transmitter of long focal length and large beam diameter. The test section tube is made of acryle with 18 mm I.D. and 900 mm length. The experimental data are obtained for the air superficial velocity between 0.7 m/s to 3.4 m/s at atmospheric pressure. The experimental results show that there exists large difference in the entrainment mechanism between the churn-turbulent flow and annular flow. Through the present study, the phase Doppler analyzer system is shown to be successfully applied to measure particle sizes larger than $2,000\mu\textrm{m}$ if a transmitter of long focal length is utilized.

  • PDF