• Title/Summary/Keyword: Flow Measurements

Search Result 1,813, Processing Time 0.027 seconds

A Study on the Fluid Flow and Heat Transfer Around a Staggered Tube Bundles Using a Low-Reynolds $k-\epsilon$ Turbulence Model (저레이놀즈수 $k-\epsilon$ 난류모델을 사용한 엇갈린 관군 주위에서의 유동 및 열전달에 관한 연구)

  • 김형수;최영기;유홍선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.212-218
    • /
    • 1995
  • Turbulent flow and heat transfer characteristics around staggered tube bundles were studied using a non-orthogonal boundary fitted coordinate system and the low Reynolds .kappa. - .epsilon. turbulence model suggested by Lam and Bremhorst. The predicted flow characteristics for two tube pitches and tube arrangement showed good agreement with the experimental data except the strongly curved region. The predicted Nusselt number was compared with measurements obtained in the staggered rough bundles and it revealed the similar trend to measurements, but the location of the maximum and minimum heat transfer differed somewhat from the measurements.

Impact of monthly arteriovenous fistula flow surveillance on hemodialysis access thrombosis and loss

  • Ara Ko;Miyeon Kim;Hwa Young Lee;Hyunwoo Kim
    • Journal of Medicine and Life Science
    • /
    • v.20 no.3
    • /
    • pp.115-125
    • /
    • 2023
  • Arteriovenous fistula flow dysfunction is the leading cause of vascular access thrombosis and loss in patients undergoing hemodialysis. However, data regarding the influence of access flow rate measurements on the long-term outcomes of access are limited. This study aims to identify accesses at a high risk of thrombosis and loss among patients undergoing hemodialysis by measuring the access flow rate and exploring an optimal threshold value for predicting future access thrombosis. We enrolled 220 patients with arteriovenous fistula undergoing hemodialysis. The primary outcome was the occurrence of access thrombosis. Access flow rates were measured monthly using the ultrasound dilution method and were averaged using all measurements from patients with patent access. In patients experienced access thrombosis, those immediately before the thrombosis were selected. Using these data, we calculated the access flow rate threshold for thrombosis occurrence by analyzing the receiver operating characteristic curve, and the patients were divided into two groups according to whether access flow rates were higher or lower than 400 mL/min. During a median follow-up period of 3.1 years, 4,510 access flows were measured (median measurements per patient, 33 times; interquartile range, 11-54). A total of 65 access thromboses and 19 abandonments were observed. Access thrombosis and loss were higher in the lowflow group than in the high-flow group. This study revealed that low access flow rates are strongly associated with access thrombosis occurrence and subsequent loss of arteriovenous fistulas in patients undergoing hemodialysis.

The Flow Field of Undershot Cross-Flow Water Turbines Based on PIV Measurements and Numerical Analysis

  • Nishi, Yasuyuki;Inagaki, Terumi;Li, Yanrong;Omiya, Ryota;Hatano, Kentaro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.4
    • /
    • pp.174-182
    • /
    • 2014
  • The ultimate objective of this study is to develop a water turbine appropriate for low-head open channels to effectively utilize the unused hydropower energy of rivers and agricultural waterways. The application of a cross-flow runner to open channels as an undershot water turbine has been considered and, to this end, a significant simplification was attained by removing the turbine casing. However, the flow field of an undershot cross-flow water turbine possesses free surfaces, and, as a result, the water depth around the runner changes with variation in the rotational speed such that the flow field itself is significantly altered. Thus, clear understanding of the flow fields observed with free surfaces to improve the performance of this turbine is necessary. In this study, the performance of this turbine and the flow field were evaluated through experiments and numerical analysis. The particle image velocimetry technique was used for flow measurements. The experimental results reflecting the performance of this turbine and the flow field were consistent with numerical analysis. In addition, the flow fields at the inlet and outlet regions at the first and second stages of this water turbine were clarified.

A Study on the Flow Field Characteristics of Air Induction System for Reducing the Signal-to-Noise in the MAFS Output

  • Yoo, Seoung-Chool
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • This study presents the flow visualization results, velocity and turbulence intensity measurements made within an air filter cover and entry region of a mass air flow sensor (MAFS) which is used in an induction system of 3.8L engine. Flow structure in two air filter cover assemblies were examined. The first was a clear plastic replica of the production cover while the second was a modified clear plastic cover with a geometry configured to reduce fluctuations. High speed flow visualization and laser doppler velocimetry (LDV) systems were used to reveal and analyze the flow field characteristics encountered in the sensor design process under steady flow conditions. A 40-watt copper vapor laser was used as a light source. Its beam is focused down to a sheet of light approximately 1.5mm thick. The light scattered off the particles was recorded by a 16mm high speed rotating prism camera at 5000 frames per second. A comparison of the flow patterns and LDV measurements in the original and modified air filter covers is presented to illustrate the controlling effect of the cover design on the turbulence structure formation near the bypass and on the sensor output signal. In both axial and radial planes of the main passage it was found that the turbulence flow pattern is remarkably influenced by the air filter cover and main passage configuration.

  • PDF

In-vivo Measurements of Blood Flow Characteristics in the Arterial Bifurcation Cascade Networks of Chicken Embryo (유정란 태아외부혈관의 단계적으로 분기되는 동맥 분지관 내부 혈액 유동특성의 in-vivo 계측)

  • Lee, Jung-Yeop;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.121-124
    • /
    • 2006
  • The arteries are very important in cardiovascular system and easily adapt to varying flow and pressure conditions by enlarging or shrinking to meet the given hemodynamic demands. The blood flow in arteries is dominated by unsteady flow phenomena due to heart beating. In certain circumstances, however, unusual hemodynamic conditions cause an abnormal biological response and often induce circulatory diseases such as atherosclerosis, thrombosis and inflammation. Therefore quantitative analysis of the unsteady pulsatile flow characteristics in the arterial blood vessels plays important roles in diagnosing these circulatory diseases. In order to verify the hemodynamic characteristics, in-vivo measurements of blood flow inside the extraembryonic arterial bifurcation cascade of chicken embryo were carried out using a micro-PIV technique. To analyze the unsteady pulsatile flow temporally, the (low images of RBCs were obtained using a high-speed CMOS camera at 250fps with a spatial resolution of $30{\mu}m\times30{\mu}m$ in the whole blood vessels. In this study, the unusual flow conditions such as flow separation or secondary flow were not observed in the arterial bifurcations. However, the vorticity has large values in the inner side of curvature of vessels. In addition, the mean velocity in the arterial blood vessel was decreased and pulsating frequency obtained by FFT analysis of velocity data extracted in front of the each bifurcation was also decreased as the bifurcation cascaded.

  • PDF

A Study of Steam Turbine Throttle Flow from Measured First Stage Shell Pressure (증기터빈 1단 Shell 압력측정에 의한 교축유동 고찰)

  • Yoon, In-Soo;Lee, Jae-Heon;Yu, Ho-Seon;Moon, Seung-Jae;Lee, Tae-Gu;Hur, Jin-Huek
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.373-376
    • /
    • 2008
  • Industrial Steam Turbine first stage shell pressure is related to throttle flow. Theoretically, first stage shell pressure could, therefore, be measured and used as an index of turbine throttle flow. However, accurate flow measurements show that this pressure is not a reliable index of the actual flow. Data analysis of steam turbinessubjected to ASME acceptance tests shows that the use of first stage shell pressure as an index of throttle flow produced errors as large as 9.6 %. The mean of the errors was +2.2% with a standard deviation of ${\pm}$2.8 %. Applications that require an accuratedetermination of turbine steam flow, such as turbine acceptance testing, should, therefore, not rely on this method. Therefore, First stage shell pressure measurement serves as a valid and economical indicator of turbine throttle flow in cases where a high degree of accuracy in throttle flow measurement is not required but repeatability is desired, such as for boiler control. Generally speaking, Steam turbine first stage shell pressure may also be a very useful monitor of turbine performance when used with certain other turbine measurements.

  • PDF

Power Savings of a Refrigerator with 3D-PTV Measurements (3D-PTV에 의한 냉장고 소비전력 저감)

  • Hwang Tae-Gyu;Doh Deog-Hee;Park Seong-Ryong;Bang Yoon-Seok;Yang Min-Cheol;Jang Gyu-Seob;Kim Suk-Roh;Lee Yeon-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1145-1153
    • /
    • 2005
  • 3D-PTV measurement has been carried out for the inner flows of a refrigerator. To visualize the air flows three-dimensionally, a helium bubble generator has been used for the 3D-PTV measurements. Three-dimensional flow field of the refrigerator's compartments have been reconstructed by the results obtained by the 3D-PTV Measurements on the electric power-consumption was also carried out in order to evaluate the improvements of the flow characteristics. It was verified that $3\%$ of power consumption was saved by improving the flow passages and characteristics.

The Vortical Flow Field of Delta Wing with Leading Edge Extension

  • Lee, Ki-Young;Sohn, Myong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.914-924
    • /
    • 2003
  • The interaction and breakdown of vortices over the Leading Edge Extension (LEX) - Delta wing configuration has been investigated through wing-surface pressure measurements, the off-surface flow visualization, and 5-hole probe measurements of the wing wake section. The description focused on analyzing the interaction and the breakdown of vortices depending on the angle of attack and the sideslip angle. The Effect of angle of attack and sideslip angle on the aerodynamic load characteristics of the model is also presented. The sideslip angle was found to be a very influential parameter of the vortex flow over the LEX-delta wing configuration. The introduction of LEX vortex stabilized the vortex flow, and delayed the vortex breakdown up to a higher angle of attack. The vortex interaction and breakdown was promoted on the windward side, whereas it was suppressed on the leeward side.

A study on the Analogy between Heat Transfer and Mass Transfer (열전달과 물질전달의 유사성에 관한 연구)

  • 유성연;노종광;정문기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2624-2633
    • /
    • 1993
  • Mass transfer experiment by naphthalene sublimation method has great advantages in measurement of local transfer coefficients in the region of a three dimensional flow or for a model of complex geometry, which is considered to be very difficult with conventional heat transfer measurements. Mass transfer data obtained by naphthalene sublimation technique are converted to the heat transfer data through heat/mass transfer analogy. This analogy is valid for a simple or laminar flow, but new insight is needed when applying to a turbulent flow or complex flow such as separation, reattachment and recirculation, The purpose of this research is to investigate how geometries and flow conditions incorporate heat/mass transfer analogy. Mass transfer experiments are performed using naphthalene sublimation technique for a flat plate, a circular cylinder, and rectangular cylinders. And mass transfer data are compared with earlier heat transfer measurements for the same geometries. Usefulness of analogy relation between heat and mass transfer is examined with these results.

Turbulent properties in a mixed statistically stationary flow

  • Baek, Tae-Sil;Doh, Deog-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.729-736
    • /
    • 2013
  • The turbulent properties in a mixed statistically stationary flow were investigated experimentally by a pseudo stereoscopic PIV. In order to validate the experimental results, the profiles of the turbulent kinetic energy were evaluated with the flow features. A mechanical agitator having 6 blades was installed at the bottom of the mixing tank (D=60cm, H=60cm). The agitator was rotated with 80rpm clockwise and counter-clockwise. For the measurements, three cameras were used and all were synchronized. The images captured by one of the three cameras was used for the measurement of rotational speed, and the images captured by the other two cameras were used to measure three dimensional components of velocity vectors. All vectors captured at the same rotational angle were phase averaged to construct three-dimensional vector fields to reconstruct the spatial distribution of the flow properties. It was seen that the jet scrolling along the tank was the main source of mixing.