• Title/Summary/Keyword: Flow Inertia

Search Result 200, Processing Time 0.023 seconds

Transient Performance Analysis of the Reactor Pool in KALIMER-600 with an Inertia Moment of a Pump Flywheel (펌프 회전차의 관성모멘트 제공에 의한 KALIMER-600 원자로 풀 과도 성능 분석)

  • Han, Ji-Woong;Eoh, Jae-Hyuk;Lee, Tea-Ho;Kim, Seong-O
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.418-426
    • /
    • 2009
  • The effect of an inertia moment of a pump flywheel on the thermal-hydraulic behaviors of the KALIMER-600(Korea Advanced LIquid MEtal Reactor) reactor pool during an early-phase of a loss of normal heat sink accident was investigated. The thermal-hydraulic analyses for a steady and a transient state were made by using the COMMIX-1AR/P code. In the present analysis a quarter of the reactor geometry was modeled in a cylindrical coordinate system, which includes a quarter of a reactor core and a UIS, a half of a DHX and a pump and a full IHX. In order to evaluate the effects of an inertia moment of the pump flywheel, a coastdown flow whose flow halving time amounts to 3.69 seconds was supplied to a natural circulation flow in the reactor vessel. Thermal-hydraulic behaviors in the reactor vessel were compared to those without the flywheel equipment. The numerical results showed a good agreement with the design values in a steady state. It was found that the inertia moment contributes to an increase in the circulation flow rate during the first 40 seconds, however to a decrease of it there after. It was also found that the flow stagnant region induced by a core exit overcooling decelerated the flow rate. The appearance of the first-peak temperature was delayed by the flow coastdown during the initial stages after a reactor trip.

Large Eddy Simulation of the Dynamic Response of an Inducer to Flow Rate Fluctuations

  • Kang, Dong-Hyuk;Yonezawa, Koichi;Ueda, Tatsuya;Yamanishi, Nobuhiro;Kato, Chisachi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.431-438
    • /
    • 2009
  • A Large Eddy Simulation (LES) of the flow in an inducer is carried out under flow rate oscillations. The present study focuses on the dynamic response of the backflow and the unsteady pressure performance to the flow rate fluctuations under non-cavitation conditions. The amplitude of angular momentum fluctuation evaluated by LES is larger than that evaluated by RANS. However, the phase delay of backflow is nearly the same as RANS calculation. The pressure performance curve exhibits a closed curve caused by the inertia effect associated with the flow rate fluctuations. Compared with simplified one dimensional evaluation of the inertia component, the component obtained by LES is smaller. The negative slope of averaged performance curve becomes larger under unsteady conditions. From the conservations of angular momentum and energy, an expression useful for the evaluation of unsteady pressure rise was obtained. The examination of each term of this expression show that the apparent decrease of inertia effects is caused by the response delay of Euler's head and that the increase of negative slope is caused by the delay of inertial term associated with the delay of backflow response. These results are qualitatively confirmed by experiments.

A Study on Performance Analysis of Cryogenic Hydrostatic Journal Bearings : the Effects of Turbulent Flow, Pressure Drop and Variable Liquid Properties (극저온 정압 저널베어링의 성능해석에 관한 연구 : 난류유동, 압력강하, 가변 밀도 및 점도의 영향)

  • 김성기;강지훈;김경웅
    • Tribology and Lubricants
    • /
    • v.19 no.3
    • /
    • pp.139-145
    • /
    • 2003
  • In this paper, static characteristics of a cryogenic hydrostatic journal bearing which has 2-rows staggered recesses are numerically analyzed. The regime of operation of this bearing is fully turbulent with large fluid inertia effects. The turbulent lubrication equation is solved under the assumption that turbulence parameters are decided by the Reynolds numbers. Pressure drop caused by inertia effect at the recess edge is considered in this analysis. Also density and viscosity of working fluid are considered as function of only pressure. Numerical results for a cryogenic Hydrostatic journal bearing show pressure distribution, load capacity, flow rate, and recess pressure. The effects of turbulent flow, pressure drop and variable liquid properties are discussed.

The influence of fluid inertia and heat dissipation in fluid films (유체막에서 관성과 열 소산의 영향)

  • Kim, Eun-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.224-234
    • /
    • 1997
  • It was demonstrated earlier that for laminar, isothermal flow of the lubricant in long journal bearings, inertia has negligible effect on the load carrying capacity and influences only the stability characteristics of the bearing. The question in the present paper is: 'will these conclusions of the isothermal theory remain valid in the presence of significant dissipation, or will lubricant inertia and dissipation interact non-linearly to bring about qualitative changes in bearing performance\ulcorner' The results obtained here assert that the effect of lubricant inertia on load carrying capacity remains negligible, irrespective of the rate of dissipation. The stability of the bearing is, however, affected by lubricant inertia. These results, although obtained here for long bearings with Sommerfeld and Gumbel boundary conditions, are believed to be applicable to practical bearing operations and affirm that bearing load may be calculated from classical, i. e., non-inertial theory.

Numerical Study of the Inertia Effect on Flow Distribution in Micro-gap Plate Heat Exchanger (유동관성에 따른 Micro-Gap 판형 열교환기 내부 유동분배 수치해석)

  • Park, Jang Min;Yoon, Seok Ho;Lee, Kong Hoon;Song, Chan Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.881-887
    • /
    • 2014
  • This paper presents numerical study on flow and heat transfer characteristics in micro-gap plate heat exchanger. In particular, we investigate the effect of flow inertia on the flow distribution from single main channel to multiple parallel micro-gaps. The flow regime of the main channel is varied from laminar regime (Reynolds number of 100) to turbulent regime (Reynolds number of 10000) by changing the flow rate, and non-uniformity of the flow distribution and temperature field is evaluated quantitatively based on the standard deviation. The flow distribution is found to be significantly affected by not only the header design but also the flow rate of the main channel. It is also observed that the non-uniformity of the temperature field has its maximum at the intermediate flow regime.

Steady and Unsteady Rotating Flows between Concentric Cylinders (동심원 환내의 정상.비정상 회전 유동)

  • 심우건
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.613-620
    • /
    • 1997
  • Steady and unsteady flows between rotating cylinders are of interest on lubrication, convective heat transfer and flow-induced vibration in large rotating machinery. Steady rotating flow is generated by rotating cylinder with constant velocity while the unsteady rotating flow by oscillating cylinder with homogeneoysly oscillating velocity. An analytical method is developed based on the simple radial coordinate transformation for the steady and unsteady rotating flows in concentric annulus. The governing equations are simplified from Navier-Stokes equatins. Considering the skin friction based on the radial variation of circumferential flow velocity, the torques acting on the fixed and the rotating cylinder are evaluated in terms of added-inertia and added-damping torque coefficients. The coefficients are found to be influenced by the oscillatory Reynolds number and the radius ratio of two cylinders; however, the effect of the oscillatory Reynolds number on the coefficients is minor in case of relatively low radius ratio.

  • PDF

An Analysis for Turbulent Hybrid Bearings with Fluid Inertia and Swirl Injection Effects (유체의 관성력과 스월의 영향을 고려한 난류 하이브리드 베어링의 해석)

  • 이용복;김창호;최동훈
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.85-91
    • /
    • 1996
  • An analysis for turbulent hybrid beatings with fluid inertia and swirl injection effect was derived for studying static characteristics of swirl-controlled hybrid journal. The swirl-controlled hybrid journal beating is considered to have more freedom in stability control in high speed rotating machinery. Current analysis is compared with experimental results with 3-recess hydrostatic journal bearing. The analysis revealed that the fluid momentum exchange at orifice discharge could produce pressure rise inside the recess region which can control the shear flow induced by journal rotation. The analysis also shows that the swirl-controlled hybrid journal beating has a capability of controlling load carrying capacity and stability by manipulating supply pressure and injection angle.

Energy Flow Finite Element Analysis(EFFEA) of Coplanar Coupled Mindlin Plates (동일 평면상에서 연성된 Mindlin 판 구조물의 에너지흐름유한요소해석)

  • Park, Young-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.307-314
    • /
    • 2016
  • Energy flow analysis(EFA) is a representative method that can predict the statistical energetics of structures at high frequencies. Generally, as the frequency increases, the shear distortion and rotatory inertia effects in the out-of-plane motion of beams or plates become important. Therefore, to predict the out-of-plane energetics of coupled structures in the high frequency range, the energy flow analyses of Timoshenko beam and Mindlin plate are required. Unlike the energy flow model of Kirchhoff plate, the energy flow model of Mindlin plate is composed of three kinds of energy governing equations(out-of-plane shear wave, bending dominant flexural wave, and shear dominant flexural wave). This paper performed the energy flow finite element analysis(EFFEA) of coplanar coupled Mindlin plates. For EFFEA of coplanar coupled Mindlin plates, the energy flow finite element formulation of out-of-plane energetics in the Mindlin plate was performed. The general EFFEA program was implemented by MATLAB® language. For the verification of EFFEA of Mindlin plate, the various numerical applications were done successfully.

Effect of Rotary Inertia of Concentrated Masses on the Natural Vibration of Fluid Conveying Pipe

  • Kang, Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.202-213
    • /
    • 1999
  • Effects of the rotary inertia of concentrated masses on the natural vibrations of fluid conveying pipes have been studied by theoretical modeling and computer simulation. For analysis, two boundary conditions for pipe ends, simply supported and clamped-clamped, are assumed and Galerkin's method is used for transformation of the governing equation to the eigenvalues problem and the natural frequencies and mode shapes for the system have been calculated by using the newly developed computer code. Moreover, the critical velocities related to a system instability have been investigated. The main conclusions for the present study are (1) Rotary inertia gives much change on the higher natural frequencies and mode shapes and its effect is visible when it has small value, (2) The number and location of nodes can be changed by rotary inertia, (3) By introducing rotary inertia, the second natural frequency approaches to the first as the location of the concentrated mass approaches to the midspan of the pipe, and (4) The critical fluid velocities to initiate the system unstable are unchanged by introduction of rotary inertia and the first three velocities are $\pi$, 2$\pi$, and 3$\pi$ for the simply supported pipe and 2$\pi$, 8.99, and 12.57 for the clamped-clamped pipe.

  • PDF

A Study on the Discharge Pressure Ripple Characteristics of Variable Displacement Vane Pump (가변용량형 유압 베인펌프의 토출압력맥동 특성 연구)

  • 장주섭;김경훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.106-114
    • /
    • 2003
  • The pressure ripple in the delivery port is caused by flow ripple, which is induced by variation of pumping chamber volume. The other reason is the reverse flow from the outlet volume produced by pressure difference between pumping chamber and outlet volume, when the pumping chamber is connected with the outlet volume. In this study, a mathematical model is presented for analyzing discharge pressure ripple, which includes vane detachment, cam ring movement , and fluid inertia effects in V-groove in the side plate. From the analysis and experiment, it was found that V-groove on the side plate, coefficient of spring supporting the cam ring, and average discharge pressure are the main factors of discharge pressure ripple in variable displacement vane pump. The theoretical results, provided in this study, were well agreed with experimental results. The analytical model to estimate the magnitude of pressure ripple in this study is expected to be used f3r the optimal design of the variable displacement vane pump.