• Title/Summary/Keyword: Flow Forming

Search Result 653, Processing Time 0.031 seconds

Reduced Finite Element Simulation of Cold Forging Processes Based on the Forming Experiment (성형실험을 통한 냉간단조 공정의 단축 유한요소 시뮬레이션)

  • Lee, Chung-Ho
    • Transactions of Materials Processing
    • /
    • v.6 no.5
    • /
    • pp.395-399
    • /
    • 1997
  • There exists a certain functional relation between Vickers hardness and flow stress in the strain-hardened material. Using this relation, the Vickers hardness values in the strain-hardened material can be converted into the flow stress values in good approximation. Therefore, the information about the flow stress distribution in the material can be easily acquired through a forming experiment. That makes it possible to simulate the process state for a critical moment of cold forging under the given boundary conditions very quickly without calculating the foregoing history of the actual deformation from the beginning.

  • PDF

A Study on the Forming Load for roller feed rate and Thickness Reduction in the spinning Process of launch vehicle fuel tank dome (돔 형상의 스피닝 가공 공정에서 롤의 이송 속도와 소재의 두께감소에 대한 성형력 연구)

  • Yeom Sung-Ho;Nam Kyoung-O;Hong Sung-In
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.387-390
    • /
    • 2006
  • Conventional spinning, shear forming and flow forming techniques are being utilized increasingly due to the great flexibility provided for producing complicated parts, enabling customers to optimize designs and reduce weight and cost, all of which are vital, especially in automotive industries, space shuttle, a munitions industry. The deformation mechanism of conventional spinning and shear forming is studied in this paper through analysis. The forming loads of a spin formed dome in an Al launch vehicle fuel tank was studied analysis and a simple FE model to predict the forming loads of the dome was proposed. The analysis is carried out to study the effects of feed rates and thickness reduction on material flow.

  • PDF

Superplstic Forming Analysis of Duplex Stainless Steel with Finite Element Method (유한요소법에 의한 Duplex 스테인레스 강의 초소성 해석)

  • Park, Ji-Won;Kang, Seok-Bong;Hwang, Yeong-Jin;Lee, Seok-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.10
    • /
    • pp.89-96
    • /
    • 2009
  • In recent years, there has been a considerable interest in the application of super plastic forming in the aircraft and automotive industries. This requires a detailed design of the technological process in order to exploit its peculiar potentialities better. Nowadays, the finite element method is used to plan the sheet metal forming processes whose simulation requires determination of material constants for super plastic materials. The present work is aimed to show a simple method to characterize super plastic materials duplex stainless steel which was formed by a constant gaspressure to hemispheres with and without back pressure. The forming operation was performed using an in-house designed and built biaxial forming apparatus. The temporal change of dome heights of hemispheres were measured for applying the pressures. The flow stresses and strain rates developed at the top of the dome during the forming step were shown to follow closely the flow stress - strain rate relationship obtained from the strain rate change tests performed at the same temperature.

Forward-Backward Extrusion Process Development of Piston-Pin by Flow Control (유동제어에 의한 피스톤 핀의 전${\cdot}$후방압출 공정 개발)

  • Park, Jong-Nam;Park, Tae-Joon;Kim, Byung-Min
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.11a
    • /
    • pp.1-12
    • /
    • 2001
  • In cold forging of piston-pin for automobile parts, the flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The purpose of this study is to investigate the material flow behavior of forward-backward extruded piston-pin through the relative velocity ratio and the stroke control of upper moving punch & container using the flow control forming technique. The finite element simulations are applied to analyse the flow defect, then the results are compared with the plasticine model material experiments. Finally, the model experiment results are in good agreement with the FE simulation ones.

  • PDF

Experimental Investigation on the Flow Control in Forward-Backward Extrusion of Piston-Pin for Automobile (자동차용 피스톤 핀의 전.후방압출에서 유동제어에 관한 실험적 연구)

  • Park, Jong-Nam;Park, Tae-Joon;Kim, Dong-Hwan;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1366-1375
    • /
    • 2002
  • In cold forging of piston-pin for automobile parts, the flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The purpose of this study is to investigate the material flow behavior of forward-backward extruded piston-pin through the relative velocity ratio and the stroke control of upper moving punch & container using the flow control forming technique. The finite element simulations are applied to analyse the flow defect, then the results are compared with the plasticine model material experiments. The model experiment results are in good agreement with the FE simulation ones.

A Study on the Uniform Thickness Distribution in Superplastic Blow Forming Process (초소성 블로우 성형품의 두께분포 균일화 연구)

  • Lee, Jeong-Hwan;Kim, Hyeon-Cheol;Lee, Yeong-Seon;Lee, Sang-Yong;Sin, Pyeong-U
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.610-619
    • /
    • 1998
  • The superplastic blow forming technology has advantages of cost reduction and low material consumption. compared to the conventional sheet metal forming technology due to the capability of precisely forming with high elongation and low flow stress. however it has a disadvantage that its partial thickness distribution is non-uniform. A processing technology like diaphragm forming has been developed even though it is difficult to prepare materials for superplastic blow forming. in this study a hemisphere forming of sheet before superplastic forming. It was found that the rotary forming material was less in quantity of cavitation at pole than that of hemisphere part that was superplastic formed without rotary forming treatment. Also discussed are the critical strain which is closely related to cavity shape and size.

  • PDF

Experimental and Analytical Researches on Mechanical Properties Related to Formability of AZ31B Alloy Sheet (AZ31B 합금판재 성형관련 기초물성 실험 및 해석 연구)

  • Kim, S.H.;Park, K.D.;Jang, J.H.;Kim, K.T.;Lee, H.W.;Lee, G.A.;Kim, K.P.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.466-472
    • /
    • 2008
  • In this paper, tension tests and formability tests are performed to construct a database related to mechanical properties and the formability of the AZ31B Mg alloy sheet. A forming test with a hemi-spherical punch is conducted at varying temperatures to establish a forming limit diagram. In order to verify the applicability of the analysis using the conventional flow hardening model, a finite element analysis is performed on the hemi-spherical punch forming process and the results are compared with experimental ones. The study investigates problems involving a computational analysis that does not consider flow softening of the magnesium alloy at elevated temperatures.

FORMABILITY OF COMBINED STRETCHING PROCESSES WITH SIMULTANEOUS COMPRESSION

  • Muranaka T.;Goto Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.193-197
    • /
    • 2003
  • In order to restrain the local necking during stretching of sheet metals, the combined stretching processes with simultaneous compression are proposed. The combined stretching tests with two types of compression to top of the cup were carried out using the pure aluminum sheets; (1) stroke control loading process and (2) pinpoint loading process. It was clarified that the metal flow in the cross-section of the cup is affected significantly both by the magnitude of load and the stroke in the compression process. It was also found that the local necking can be restrained effectively by the metal flow from center of the cup and therefore the forming limit is improved.

  • PDF