• Title/Summary/Keyword: Flow Fluctuation

Search Result 607, Processing Time 0.023 seconds

Unsteady Wall Pressure Fluctuation Generated from the Impinging Vortex on the Chamfered Forward Step (모따기된 전향계단에 부딪치는 와류에 의한 비정상 벽면압력 변동)

  • Ryu, Ki-Wahn;Lee, Jun-Shin
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.312-317
    • /
    • 2001
  • Modifying effects of the rectangular forward step for suppressing the unsteady pressure fluctuation during interaction between the upstream vortical flow with the edge are studied numerically. The vortical flow is modeled by a point vortex, and the unsteady pressure coefficient is obtained from the velocity and the potential field. To investigate the effects of the edge shape the rectangular forward step is chamfered with various angles. Calculation show that the pressure peaks become decreased by increasing the vortex height as well as the chamfering angle. The pressure amplitudes are very sensitive to the change of the initial vortex height. From this study we can find out that the chamfered edge has two effects; the one is that it suppresses the pressure amplitude generated from the edge, and the other is that it decreases the time variation of unsteady pressure fluctuation. These modifying concepts can be applied to attenuate the self-sustained oscillation mechanism at the open cavity flow.

  • PDF

Unsteady Analysis of Hydraulic Behavior Characteristics in Water Treatment System Using CFD Simulation (CFD를 이용한 정수처리 공정 내 유량변동시 수리흐름 해석에 관한 연구)

  • Kim, Seong-Su;Choi, Jong-Woong;Park, No-Suk;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.215-222
    • /
    • 2013
  • The fluctuation of inlet flow to a water treatment plant makes a serious problem that it can change the outlet flowrate from each process abruptly. Since it takes very short time for the surface wave occurred from the fluctuation of inlet flow to reach the latter processes, it is impossible for operators to cope with that stably. In order to investigate the characteristics of hydraulic behavior for rectangular sedimentation basin in water treatment plant, CFD(Computational Fluid Dynamics) simulation were employed. From the results of both CFD simulations, it was confirmed that time taken for the follow-up processes by the fluctuation in intake well can be estimated by the propagation velocity of surface waves. Also, it takes very short time for the surface wave occurred from the fluctuation of inlet flow to reach the latter processes. In the case of inlet flowerate being increased sharply, local velocity within sedimentation basin appeared as wave pattern and increased due to convection current. Also, it could be observed that vortex made local velocity in the vicinity of bottom rise.

A SPACIAL ANALYSIS OF IN-CYLINDER TURBULENCE FLOW IN SI ENGINE USING CROSS CORRELATION PIV (상호상관 PIV기법을 이용한 엔진 실린더내 난류의 공간적 해석)

  • Chung, Ku-Seob;Chung, Yong-Oug
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3038-3043
    • /
    • 2008
  • Tumble or swirl flow is used adequately to promote mixing of air and fuel in the cylinder and to enlarge turbulent intensity in the late time of compression stroke. However, since in-cylinder flow is a kind of transient state with rapid flow variation, that is, non-steady state flow, swirl or tumble flow has not been analyzed sufficiently and not been recognized whether they are available for combustion theoretically yet. In the investigation of intake turbulent characteristics using PIV method, different flow characteristics were showed according to SCV figures. SCV installed engine had higher vorticity, turbulent strength by fluctuation and turbulent kinetic energy than a baseline engine, especially around the wall and lower part of the cylinder. Consequently, as swirl flow was added to existing tumble flow, it was found that fluctuation component increased and flow energy was conserved effectively through the experiment.

  • PDF

Unsteady Nature of a Tip Leakage Vortex in an Axial Flow Fan (축류팬 익단누설와류의 비정상 특성)

  • Jang, Choon-Man;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.845-850
    • /
    • 2003
  • Unsteady nature of a tip leakage vortex in an axial flow fan operating at a design and off-design operating conditions has been investigated by measuring the velocity fluctuation in a blade passage with a rotating hotwire probe sensor. Two hot-wire probe sensors rotating with the fan rotor were also introduced to obtain the cross-correlation coefficient between the two sensors located in the vortical flow as well as the fluctuating velocity. The results show that the vortical flow structure near the rotor tip can be clearly observed at the quasi-orthogonal planes to a tip leakage vortex. The leakage vortex is enlarged as the flow rate is decreased, thus resulting in the high blockage to main flow. The spectral peaks due to the fluctuating velocity near the rotor tip are mainly observed in the reverse flow region at higher flow rates than the peak pressure operating condition. However, no peak frequency presents near the rotor tip for near stall condition.

  • PDF

An Effect of Pressure Fluctuations of a Combustion Chamber on the Modulation of Equivalence Ratio in the Channel of the Burner (연소실 압력 변동이 버너내부의 당량비 변조에 미치는 영향)

  • Hong, Jung-Goo;Oh, Kwang-Chul;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.202-207
    • /
    • 2007
  • In order to understand the phenomena of combustion instability, an experimental study was conducted at the moderate pressure and ambient temperature conditions. The flame behavior and the pressure fluctuations were measured in a dump combustor. Various types of combustion modes occurred in accordance with the equivalence ratio and the fuel supplying conditions. The fluctuation of pressure, heat release and equivalence ratio were measured by piezoelectric pressure sensor, high speed Intensified Charge Coupled Device (HICCD) camera and gas chromatography respectively. Two representative modes were self-excited pressure oscillations at the resonance of combustion chamber (200Hz) and instabilities related to the modulated fuel flow rate through the fuel holes (10Hz). It is found that, especially in an unchoked fuel flow condition, the modulation of the fuel flow rate affects the characteristics of flame behavior and pressure fluctuations in a lean premixed flame.

Experimental Study on the Characteristics of Turbulent Wall Pressure Fluctuation Over Compliant Coatings (유연재 코팅 평판의 난류 변동압력 특성에 관한 실험적 연구)

  • Park, Kyung-Hoon;Lee, Seung-Jae;Shin, Ku-Kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.293-300
    • /
    • 2007
  • Turbulent boundary layer over an underwater vehicle is formed when it moves underwater and wall pressure fluctuation within the turbulent boundary layer generates flow-induced noise by exciting the elastic hull of the underwater vehicle. One of the methods to reduce this flow noise is to attach a compliant layer on the surface of the vehicle. In order to observe the possibility of noise reduction in the water when the compliant layer treatments are applied on the surface, three types of specimens those are a bare steel plate, a steel plate coated with neoprene and a steel plate with polyurethane coating material are tested at various flow speeds in a low noise cavitation tunnel. This paper presents the results of measurements and analysis of wall pressure fluctuations which is a main source of flow noise, within the turbulent boundary layer on three specimens. Its results could be shown that about 10dB reduction of wall fluctuation pressure at high frequencies was achieved due to the dissipation of turbulent energy by the compliant coating while it makes the turbulent boundary layer thicker and changes the behavior of turbulent flow in the layer.

LES Studies on Flow Structure and Flame Characteristic with Equivalence Ratios in a Swirling Premixed Combustor (선회 예혼합연소기에서 당량비 변화에 따른 유동구조 및 화염특성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Kim, Se-Won;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.4
    • /
    • pp.27-35
    • /
    • 2006
  • The impacts of equivalence ratio on flow structure and flame dynamic in a model gas turbine combustor are investigated using large eddy simulation(LES). Dynamic k-equation model and G-equation flamelet model are employed as LES subgrid model for flow and combustion, respectively. As a result of mean flow field for each equivalence ratio, the increase of equivalence ratio brings about the decrease of swirl intensity through the modification of thermal effect and viscosity, although the same swirl intensity is imposed at inlet. The changes of vortical structure and turbulent intensity etc. near flame surface are occurred consequently. That is, the decrease of equivalence ratio can leads to the increase of heat release fluctuation by the more increased turbulent intensity and fluctuation of recirculation flow. In addition, the effect of inner vortex generated from vortex breakdown on the heat release fluctuation is increased gradually with the decrease of equivalence ratio. Finally, it can be identified that the variations of vortical structure play an important role in combustion instability, even though the small change of equivalence ratio is occurred.

  • PDF

Quantifying the Variation of Mass Flow Rate generated in a Simplex Swirl Injector by the Pressure Fluctuation for Injector Dynamics Research

  • Khil, Tae-Ock;Kim, Sung-Hyuk;Cho, Seong-Ho;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.218-225
    • /
    • 2008
  • When the heat release and acoustic pressure fluctuations are generated in the combustor by irregular combustion, these fluctuations affect the mass flow rate of the propellants injected through the injectors. Also, the variations of the mass flow rate by these fluctuations again bring about irregular combustion and furthermore that is related with combustion instability. Therefore, it is very important to identify the mass variation for the pressure fluctuation on the injector and to investigate its transfer function. So, we first have studied quantifying the variation of mass flow rate generated in simplex swirl injector by injection pressure fluctuation. To acquire the transient mass flow rate in orifice with time, we have tried to measure of the flow axial velocity and liquid film thickness in orifice. The axial velocity is acquired through theoretical approach after measuring the pressure in orifice and the flow area in the orifice is measured by electric conductance method. As results, mass flow rate calculated by axial velocity and liquid film thickness measuring in orifice accorded with mass flow rate acquired by direct measuring method in the small error range within 1 percents in steady state and within 6 percents as average mass flow rate in pulsated state. Hence this method can be used to measure the mass flow rate not only in steady state but also in unsteady state because the mass flow rate in the orifice can acquire with time and this method shows very high accuracy based on the experimental results.

  • PDF

Unsteady Flow Characteristics of an Axial Flow Fan Installed in the Outdoor Unit of Air Conditioner (에어콘 실외기용 축류송풍기의 비정상 유동장 특성 연구)

  • Jang, Choon-Man
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.223-230
    • /
    • 2005
  • The unsteady nature of vortex structures has been investigated by a large eddy simulation (LES) in an axial flow fan with a shroud covering only the rear region of its rotor tip. The simulation shows that the tip vortex plays a major role in the structure and unsteady behavior of the vortical flow in the fan. The movements of the vortex structures induce high-pressure fluctuations on the rotor blade and in the blade passage. Frequency characteristics of the fluctuating pressure on the rotor blade are analyzed using wavelet transform. The dominant frequency of the real-time pressure selected at the high pressure fluctuation region corresponds well to that of the fluctuating rotor torque and the experimental result of fan noise. It is mainly generated due to the unsteady behavior of the vortical flow, such as the tip vortex and the leading edge separation vortex.

  • PDF

LES studies on combustion characteristic with equivalence ratios in a model gas turbine combustor (모형 가스터빈 연소기에서 당량비 변화에 따른 연소특성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Lee, Hyun-Yong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.242-250
    • /
    • 2006
  • The impacts of equivalence ratio on the flow structure and flame dynamics in a model gas turbine combustor are investigated using large eddy simulation(LES). Dynamic k-equation model and G-equation flamelet model are employed as LES subgrid model for flow and combustion, respectively. As a result of mean flow field for each equivalence ratio, the increase of equivalence ratio brings about the decrease of swirl intensity through the modification of thermal effect and viscosity, although the same swirl intensity is imposed at inlet. The changes of vortical structure and turbulent intensity etc. near flame surface are occurred consequently. That is, the decrease of equivalence ratio can leads to the increase of heat release fluctuation by the more increased turbulent intensity and fluctuation of recirculation flow. In addition, the effect of inner vortex generated from vortex breakdown on the heat release fluctuation is increased gradually with the decrease of equivalence ratio. Finally, it can be identified that the variations of vortical structure play an important role in combustion instability, even though the small change of equivalence ratio is occurred.

  • PDF