• 제목/요약/키워드: Flow Field Design

검색결과 943건 처리시간 0.03초

수치 최적화 기법을 이용한 램 가속기 성능 향상 연구 (A Study on the Ram Accelerator Performance Improvement Using Numerical Optimization Techniques)

  • 전용희;이재우;변영환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 추계 학술대회논문집
    • /
    • pp.77-84
    • /
    • 1999
  • Numerical design optimization techniques are implemented for the improvement of the ram accelerator performance. The design object is to find the minimum ram tube length required to accelerate projectile from initial velocity $V_0$ to target velocity $V_e$. The premixture is composed of $H_2,\;O_2,\;N_2$ and the mole numbers of these species are selected as design variables. The objective function and the constraints are linearized during the optimization process and gradient-based Simplex method and SLP(Sequential Linear Programming) have been employed. With the assumption of two dimensional inviscid flow for internal flow field, the analyses of the nonequilibrium chemical reactions for 8 steps 7 species lave been performed. To determined the tube length, ram tube internal flow field is assumed to be in a quasi-steady state and the flow velocity is divided into several subregions with equal interval. Hence the thrust coefficients and accelerations for corresponding subregions are obtained and integrated for the whole velocity region. With the proposed design optimization techniques, the total ram tube length had been reduced $19\%$ within 7 design iterations. This optimization procedure can be directly applied to the multi-stage, multi-premixture ram accelerator design optimization problems.

  • PDF

Numerical Study of Inlet and Impeller Flow Structures in Centrifugal Pump at Design and Off-design Points

  • Cheah, Kean Wee;Lee, Thong-See;Winoto, S.H.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.25-32
    • /
    • 2011
  • The objective of present work is to use numerical simulation to investigate the complex three-dimensional and secondary flow structures developed at the inlet and impeller in a centrifugal pump at design and off-design points. The pump impeller is shrouded with 6 backward swept blades and with a specific speed of 0.8574. The characteristic of the pump is measured experimentally with straight and curved intake sections. Numerical computation is carried out to investigate the pump inlet flow structures and subsequently the flow field within the centrifugal pump. The numerical results showed that strong interaction between the impeller eye and intake section. Secondary flow structure occurs upstream at the pump inlet has great influence on the pump performance and flow structure within the impeller.

Comparison between CFD Analysis and Experiments According to Various PEMFC Flow-field Designs

  • Lee, Kang-In;Lee, Se-Won;Park, Min-Soo;Cho, Yong-Hun;Cho, Yoon-Hwan;Chu, Chong-Nam;Sung, Yung-Eun
    • 전기화학회지
    • /
    • 제12권1호
    • /
    • pp.61-67
    • /
    • 2009
  • Flow-field design has much influence over the performance of proton exchange membrane fuel cell (PEMFC) because it affects the pressure magnitude and distribution of the reactant gases. To obtain the pressure magnitude and distribution of reactant gases in five kinds of flow-field designs, computational fluid dynamics (CFD) analysis was performed. After the CFD analysis, a single cell test was carried out to obtain the performance values. As expected, the pressure differences due to different flow-field configurations were related to the PEMFC performance because the actual performance results showed the same tendency as the results of the CFD analysis. A large pressure drop resulted in high PEMFC performance. The single serpentine configuration gave the highest performance because of the high pressure difference magnitudes of the inlet/outlet. On the other hand, the parallel flow-field configuration gave the lowest performance because the pressure difference between inlet and outlet was the lowest.

Application of a discrete vortex method for the analysis of suspension bridge deck sections

  • Taylor, I.J.;Vezza, M.
    • Wind and Structures
    • /
    • 제4권4호
    • /
    • pp.333-352
    • /
    • 2001
  • A two dimensional discrete vortex method (DIVEX) has been developed to predict unsteady and incompressible flow fields around closed bodies. The basis of the method is the discretisation of the vorticity field, rather than the velocity field, into a series of vortex particles that are free to move in the flow field that the particles collectively induce. This paper gives a brief description of the numerical implementation of DIVEX and presents the results of calculations on a recent suspension bridge deck section. The predictions for the static section demonstrate that the method captures the character of the flow field at different angles of incidence. In addition, flutter derivatives are obtained from simulations of the flow field around the section undergoing vertical and torsional oscillatory motion. The subsequent predictions of the critical flutter velocity compare well with those from both experiment and other computations. A brief study of the effect of flow control vanes on the aeroelastic stability of the bridge is also presented and the results from DIVEX are shown to be in accordance with previous analytical and experimental studies. In conclusion, the results indicate that DIVEX is a very useful design tool in the field of wind engineering.

2차원 축류압축기 블레이드의 공력설계를 위한 Navier-Stokes방정식 적용 연구 (Application of Navier-Stokes Equations to Aerodynamic Design of Two-Dimensional Axial-Flow Compressor Blades)

  • 정희택;김주섭
    • 동력기계공학회지
    • /
    • 제2권3호
    • /
    • pp.15-20
    • /
    • 1998
  • An integrated computing system has been developed for a Navier-Stokes design procedure of an axial-flow compressor blades. The process is done on the four separate steps, i.e., determination of the basic profiles, generation of computational grids, cascade flow simulation and analysis of the computed results in design sense. Applications are made to the blade design of the LP compressor. Computational results are analyzed with respect to the flow-field characteristics and are compared with the expected design requirements. The present system are coupled with the design procedure of the turbomachinery blades using the Navier-Stokes technique.

  • PDF

A Study on the Flow Field Characteristics of Air Induction System for Reducing the Signal-to-Noise in the MAFS Output

  • 유성출
    • 한국분무공학회지
    • /
    • 제5권1호
    • /
    • pp.49-57
    • /
    • 2000
  • This study presents the flow visualization results, velocity and turbulence intensity measurements made within an air filter cover and entry region of a mass air flow sensor (MAFS) which is used in an induction system of 3.8L engine. Flow structure in two air filter cover assemblies were examined. The first was a clear plastic replica of the production cover while the second was a modified clear plastic cover with a geometry configured to reduce fluctuations. High speed flow visualization and laser doppler velocimetry (LDV) systems were used to reveal and analyze the flow field characteristics encountered in the sensor design process under steady flow conditions. A 40-watt copper vapor laser was used as a light source. Its beam is focused down to a sheet of light approximately 1.5mm thick. The light scattered off the particles was recorded by a 16mm high speed rotating prism camera at 5000 frames per second. A comparison of the flow patterns and LDV measurements in the original and modified air filter covers is presented to illustrate the controlling effect of the cover design on the turbulence structure formation near the bypass and on the sensor output signal. In both axial and radial planes of the main passage it was found that the turbulence flow pattern is remarkably influenced by the air filter cover and main passage configuration.

  • PDF

원심형 팬의 유동해석에 관한 연구 (Flow Field Analysis of a Centrifugal Fan)

  • 임종수;김창성;신동신;노오현;이수갑
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.105-114
    • /
    • 1998
  • Flow field and near-field noise of a centrifugal fan has been studied with an efrcient compressible method and STAR-CD. The flow field of the centrifugal fan is assumed two-dimensional. Most of the compressible studies has been done by inviscid solver because viscous simulation shows little difference. The near field noise is estimated in term s of sound pressure level in frequency domain transformed from the computed pressure fluctuations using FFT. The simulation has been done on various design elements such as impeller blade shapes, the number of blades and cut-off clearance. The comparison shows that the number of blades has a significant effect on near-field noise without losing aerodynamic performance.

  • PDF

원심형 홴의 유동해석에 관한 연구 (Flow Field Analysis of a Centrifugal Fan)

  • 신동신;임종수;김창성;노오현;이수갑
    • 한국유체기계학회 논문집
    • /
    • 제2권1호
    • /
    • pp.43-49
    • /
    • 1999
  • Flow field and near-field noise of a centrifugal fan has been studied with an efficient compressible method and STAR-CD. The flow field of the centrifugal fan is assumed to be two-dimensional. Most of the compressible studies have been done by inviscid solver because viscous simulation shows little difference. The near field noise is estimated in terms of sound pressure level in frequency domain transformed from the computed pressure fluctuations using FFT. The simulation has been done on various design elements such as impeller blade shapes, the number of blades and cut-off clearance. The comparison shows that the number of blades has a significant effect on near-field noise without losing aerodynamic performance.

  • PDF

최적화 기법을 이용한 대형 증기터빈 유로설계 (Flow Path Design of Large Steam Turbines Using An Automatic Optimization Strategy)

  • 임홍식;김영상;조상현;권기범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.771-776
    • /
    • 2001
  • By matching a well established fast throughflow code, with standard loss correlations, and an efficient optimization algorithm, a new design system has been developed, which optimizes inlet and exit flow-field parameters for each blade row of a multistage axial flow turbine. The compressible steady state inviscid throughflow code based on streamline curvature method is suitable for fast and accurate flow calculation and performance prediction of a multistage axial flow turbine. A general purpose hybrid constrained optimization package, iSIGHT has been used, which includes the following modules: genetic algorithm, simulated annealing, modified method of feasible directions. The design system has been demonstrated using an example of a 5-stage low pressure steam turbine for 800MW thermal power plant previously designed by HANJUNG. The comparison of computed performance of initial and optimized design shows significant improvement in the turbine efficiency.

  • PDF

마이크로 솔레노이드의 해석 및 설계 (Analysis and Design of Micro Solenoid)

  • 전용식;배상규;김동수
    • 유공압시스템학회논문집
    • /
    • 제3권4호
    • /
    • pp.14-20
    • /
    • 2006
  • Recently, the on-off solenoid valves have been focused on core technology in the fields of the production line of semi-conductor chips and the micro fluid chips for bio-medical applications. A key characteristics for on-off solenoid valve, operated by compressed air, are high speed response and great repeatability. Indeed, it is also important to keep the pressure on the cross-sectional area of the poppet to be constant regardless of the fluctuation of the pressure exerted on the ports. In this study, we have designed and analysed the high-speed and high flow rate on-off solenoid valve using the analogy of equivalent magnetic circuit and Finite Element Method (FEM) respectively. In case of poppet, flow field characteristics was analyzed by the variation of poppet and it was able to display flow field by changing the location of the poppet. Also, we verified possibility of the design through the static and dynamic pressure and the 3D simulation using distribution curve of the force by working the front poppet.

  • PDF