• Title/Summary/Keyword: Flow Exit

Search Result 988, Processing Time 0.033 seconds

A Study on the Flow Characteristics of the Flue Gas Recirculation with the Change of Venturi Tube Shape (벤튜리관 형상에 따른 배기가스 재순환 유동 특성에 관한 연구)

  • Ha, Ji Soo;Shim, Sung Hun;Kim, Dae Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.12-18
    • /
    • 2019
  • Exhaust gas recirculation method is widely used among various methods for reducing nitrogen oxides in automobile engines and incinerators. In the present study, the computational fluid dynamic analysis was accomplished to derive the optimal location of air nozzle exit position by changing its position in a venturi tube for the maximum flue gas recirculation effect. In addition, the flue gas recirculation characteristics with a cone at the exit of air nozzle was elucidated with flue gas recirculation flow rate ratio and mixed gas exit temperature. When the air nozzle exit position was changed from the start position (z = 0) to the end position (z = 0.6m) of the exhaust gas recirculation exit pipe, the change of streamline and temperature distribution in the venturi tube was observed. The exhaust gas recirculation flow rate and the average temperature at the mixed gas exit position was quantitatively compared. From the present study, the optimal location of air nozzle exit position for the maximum flue gas recirculation flow rate ratio and maximum mixed gas exit temperature is z = 0.15m (1/4L). In addition, when the cone is installed at the outlet of the air nozzle, the velocity of the air nozzle outlet is increased, the flue gas recirculation flow rate was increased by about 2 times of the flow rate without cone, and the mixed gas exit temperature is increased by $116^{\circ}C$.

Performance of NACA 65-810 Radial Airfoil Impellers (NACA 65-810 반경류 에어포일 임펠러의 성능특성)

  • Kang, Shin-Hyoung;Hu, Shengli
    • The KSFM Journal of Fluid Machinery
    • /
    • v.1 no.1 s.1
    • /
    • pp.24-31
    • /
    • 1998
  • Aerodynamic performance tests and flow measurement were carried out for several radial impellers of NACA 65-810 airfoil. The data base obtained are to be used for verifying the methods of flow analysis and CFD codes. The effects of numbers and span of blades on the performances, efficiency and impeller exit flow are investigated in the present study. The flow rate on the performance curve is proportional to the span of the blade for the same value of fan pressure rise. The magnitude of radial velocity component at the impeller exit gradually decreases from the hub to shroud side. The magnitude of tangential velocity component gradually increases from the hub to shroud side. The way of variations of velocity is the same at the diffuser exit, however, becomes more uniform. The pressure rise performance increases with blade number at the small flow coefficients, however, decreases with the number of blade at the large flow coefficients. This shows that flow guidance in important at the low flow rate and the friction becomes significant at the high flow rate.

  • PDF

Characteristics of Exit Flow and Performance of a Turbopump Inducer (터보펌프 인듀서의 출구 유동 및 성능 특성)

  • Hong, Soon-Sam;Koo, Hyun-Chul;Cha, Bong-Jun;Kim, Jin-han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.4 s.21
    • /
    • pp.38-44
    • /
    • 2003
  • Flow field downstream of an inducer was measured to see the flow and performance characteristics of a turbopump inducer. A large axisymmetric collector instead of a volute casing was installed to obtain circumferentially uniform flow - without interaction of the inducer and the volute. A conventional 3-hole probe was used to measure the flow. At inducer exit, axial component of absolute velocity decreased on hub region with decrease in flow rate. Tangential velocity component, static pressure, and total pressure increased from hub to tip. Relative flow angle from tangential direction was a little higher than outlet blade angle at flow coefficient ${\phi}=0.087$ and 0.073. Dynamic pressure was $53\%$ of the mean total pressure at inducer exit at ${\phi}=0.073$.

Measurement Techniques on Unsteady Flow at Impeller Exit (임펠러 출구에서의 비정상 유동 측정 기법)

  • Shin, You-Hwan;Kim, Kwang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.123-128
    • /
    • 1998
  • This study presents the measurement techniques on the periodic fluctuating flow such as the discharge flow of a centrifugal impeller in unstable operating region. During rotating stall, the flow at the exit of a centrifugal compressor impeller fluctuates periodically with lower frequency than that of the blade passing. To observe the blade-to-blade flow characteristics during rotating stall, the phases of all the sampled data sets should be adjusted to those of the reference signals with two processes, in these processes, DPLEAT (Double Phase-Locked Ensemble Averaging Technique) can be used. From these measurement and data processing techniques, the characteristics not only on the blade-to-blade flow with high frequency, but also on the periodic rotating stall flow with low frequency at the centrifugal impeller exit can be clearly observed.

  • PDF

Measurement Techniques on Unsteady Flow at Impeller Exit (임펠러 출구에서의 비정상 유동 측정 기법)

  • Shin, You-Hwan;Kim, Kwang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.81-87
    • /
    • 1999
  • This study presents the measurement techniques on the periodic fluctuating flow such as the discharge flow of a centrifugal impeller in an unstable operating region. During rotating stall, the flow at the exit of a centrifugal compressor impeller fluctuates periodically with a lower frequency than that of the blade passing. To observe the blade-to-blade flow characteristics during the rotating stall, the phases of all the sampled data sets should be adjusted to those of the reference signals with two processes, in these processes, DPLEAT (Double Phase-Locked Ensemble Averaging Technique) can be used. From these measurements and data processing techniques, the characteristics illustrated a blade-to-blade flow with high frequency, but also a periodic rotating stall flow with a low frequency at the centrifugal impeller exit which was clearly observed.

  • PDF

Temperature Separation Characteristics of a Vortex Tube Based on the Back Pressure of the Cold Air Exit (저온 출구의 배압조건에 따른 볼텍스 튜브의 온도분리 특성 연구)

  • Im, Seokyeon
    • Tribology and Lubricants
    • /
    • v.32 no.5
    • /
    • pp.166-171
    • /
    • 2016
  • Electric vehicle ownership is expanding for two reasons: its technology features have enhanced fuel economy, and the number of vehicle emissions regulations is increasing. Battery performance has a large influence on the capability of electric vehicles, and even though battery thermal management has been actively researched, specific technological improvements to battery performance are not being presented. For instance, many industrial applications utilize vortex tubes as components for refrigeration machines because of their numerous intrinsic benefits. If electric vehicles incorporate vortex tubes for battery cooling, performance and efficiency advancements are possible. This study uses a counter-flow vortex tube to investigate its temperature separation characteristics, based on the back pressure of the cold air exit and the difference between the inlet and back pressures. The experiment uses a vortex tube with the following parameters: six nozzle holes, a 20 mm inner vortex diameter (D), a 14D tube length, a 0.7D cold exit orifice diameter, and a nozzle area ratio of 0.142. The measurements prove that the temperature difference between the hot air and cold air decreased because of the flow resistance of the hot air and the backflow phenomenon at the cold air exit. The flow resistance causes the temperature difference to decrease, and the back pressure of the cold air exit influences the flow resistance. The results show that the back pressure significantly influences the efficiency of temperature separation.

Design and Experimental Study on a Turbo Air Compressor for Fuel Cell Applications (연료전지용 터보 공기압축기의 설계 및 시험평가)

  • Choi, Jae-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.26-34
    • /
    • 2008
  • This study presents an aerodynamic design and an experimental performance test of a turbo air compressor consisted of mixed-flow impeller and curved diffuser for the PEM fuel cell vehicle application. Many studies compare the efficiency, cost or noise level of high-pressure and low-pressure operation of PEM fuel cell systems. Pressure ratio 2.2:1 is considered as design target The goal of compressor design is to enlarge the flow margin of compressor from surge to choke mass flow rate to cover the operational envelope of FCV. Large-scale rig test is performed to evaluate the compressor performance and to compare the effects of compressor exit pipe volume to stall or surge characteristics. The results show that the mixed-flow compressor designed has large flow margin, and the flow margin of compressor configuration with small exit volume is larger than that with large exit volume.

Thermodynamic and Aerodynamic Meanline Analysis of Wet Compression in a Centrifugal Compressor

  • Kang, Jeong-Seek;Cha, Bong-Jun;Yang, Soo-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1475-1482
    • /
    • 2006
  • Wet compression means the injection of water droplets into the compressor of gas turbines. This method decreases the compression work and increases the turbine output by decreasing the compressor exit temperature through the evaporation of water droplets inside the compressor. Researches on wet compression, up to now, have been focused on the thermodynamic analysis of wet compression where the decrease in exit flow temperature and compression work is demonstrated. This paper provides thermodynamic and aerodynamic analysis on wet compression in a centrifugal compressor for a microturbine. The meanline dry compression performance analysis of centrifugal compressor is coupled with the thermodynamic equation of wet compression to get the meanline performance of wet compression. The most influencing parameter in the analysis is the evaporative rate of water droplets. It is found that the impeller exit flow temperature and compression work decreases as the evaporative rate increases. And the exit flow angle decreases as the evaporative rate increases.

Numerical Study on Flow Characteristics of Synthetic Jet with Rectangular and Circular Slot Exit (사각형 및 원형 출구 Synthetic Jet의 유동 특성에 대한 수치적 연구)

  • Kim, Min-Hee;Kim, Woo-Re;Kim, Chong-Am;Jung, Kyung-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.585-595
    • /
    • 2011
  • The flow characteristics of synthetic jet depending on rectangular and circular jet exit configuration are investigated using numerical computation with cross flow. In rectangular slot, synthetic jet generates the strong vortex but supplies fewer momentum and effectiveness of flow control is reduced along flow direction. In circular slot, regular vortex is formed from slot center to end. It affects the wider region than rectangular slot. The distribution of wall shear stress is considered in order to indicate the effectiveness of flow control device for flow separation delay. Consequently, circular slot is a more suitable candidate for delaying flow separation. In order to derive the optimal shape of a circular slot exit, hole gap and diameter that affect the flow structure and flow control were analyzed. As a result, consider the hole diameter and gap of circular slot exit design, effectiveness of the flow control can be increased.

Exit Flow Measurements of a Centrifugal Pump Impeller

  • Hong, Soon-Sam;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1147-1155
    • /
    • 2002
  • Discharge flows from a centrifugal pump impeller with a specific speed of 150 [rpm, m$^3$/min, m] were experimentally investigated. A large axisymmetric collector instead of a volute casing was installed to obtain circumferentially uniform flow, i.e. without interaction of the impeller and the volute. The unsteady flow was measured at the impeller exit and vaneless diffuser using a hot film probe and a pressure transducer. The flow at impeller exit showed pronounced jet-wake flow patterns. The wake, which was on the suction/hub side at high flow rate, became enlarged pitchwisely on both the hub and the shroud side as the flow rate decreases. The pitchwise non-uniformity of the flow rapidly decreased along the downstream and the non-uniformity almost disappeared at radius ratio of 1.18 for medium flow rate. The mean vaneless diffuser flow was reasonably predicted using a one dimensional analysis when an empirical constant was used to specify the skin friction coefficient. The data can be used for a centrifugal pump impeller design and validation of CFD codes and flow modeling.