• Title/Summary/Keyword: Flow Duration Curve

Search Result 154, Processing Time 0.027 seconds

Conversion Function and Relationship of Loss of Load Expectation Indices on Two Kinds of Load Duration Curve (두 종류의 부하곡선에 관한 공급지장시간기대치(LOLE)의 상호 변환관계성)

  • Lee, Yeonchan;Oh, Ungjin;Choi, Jaeseok;Cha, Junmin;Choi, Hongseok;Jeon, Donghun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.475-485
    • /
    • 2017
  • This paper develops a conversion function and method transforming from daily peak load curve used $LOLE_D$ [days/year] to hourly load curve used $LOLE_H$[hours/year]and describes relationship between $LOLE_D$ [days/year] and $LOLE_H$ [hours/year]. The indices can not only be transformed just arithmetically but also have different characteristics physically because of using their different load curves. The conversion function is formulated as variables of capacity and forced outage rate of generator, hourly load daily load factor and daily peak load yearly load factor, etc. Therefore, the conversion function (${\gamma}={\varphi}$(.)) can not be simple. In this study, therefore, the function is formulated as linear times of separated two functions. One is an exponential formed conversion function of daily load factor. Another is formulated with an exponential typed conversion function of daily peak load yearly load factor. Futhermore, this paper presents algorithm and flow chart for transforming from $LOLE_D$[days/year] to $LOLE_H$[hours/year]. The proposed conversion function is applied to sample system and actual KPS(Korea Power System) in 2015. The exponent coefficients of the conversion functions are assessed using proposed method. Finally, assessment errors using conversion function for case studies of sample system and actual system are evaluated to certify the firstly proposed method.

Evaluating Future Stream Flow by Operation of Agricultural Reservoir Group considering the RCP 8.5 Climate Change Scenario (RCP 8.5 기후변화 시나리오를 고려한 농업용 저수지군 운영에 따른 미래 하천유량 평가)

  • Lee, Jaenam;Noh, Jaekyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.113-122
    • /
    • 2015
  • This study aims to evaluate future stream flow by the operation of agricultural reservoir group at the upper stream of the Miho River. Four agricultural reservoirs with storage capacities greater than one million cubic meters within the watershed were selected, and the RCP 8.5 climate change scenario was applied to simulate reservoir water storage and stream flow assuming that there are no changes in greenhouse gas reduction. Reservoir operation scenarios were classified into four types depending on the supply of instream flow, and the water supply reliability of each reservoir in terms of water supply under different reservoir operation scenarios was analyzed. In addition, flow duration at the watershed outlet was evaluated. The results showed that the overall run-off ratio of the upper stream watershed of the Miho River will decrease in the future. The future water supply reliability of the reservoirs decreased even when they did not supply instream flow during their operation. It would also be difficult to supply instream flow during non-irrigation periods or throughout the year (January-December); however, operating the reservoir based on the operating rule curve should improve the water supply reliability. In particular, when instream flow was not supplied, high flow increased, and when it was supplied, abundant flow, ordinary flow, and low flow increased. Drought flow increased when instream flow was supplied throughout the year. Therefore, the operation of the agricultural reservoirs in accordance with the operating rule curve is expected to increase stream flow by controlling the water supply to cope with climate change.

Research on the Applicability of the Load Duration Curve to Evaluate the Achievement of Target Water Quality in the Unit Watershed for a TMDL (수질오염총량 단위유역의 목표수질 달성여부 평가를 위한 부하지속곡선 적용성 연구)

  • Hwang, Ha-Sun;Park, Bae-Kyung;Kim, Yong-Seok;Park, Ki-Jung;Cheon, SeUk;Lee, Sung-Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.885-895
    • /
    • 2011
  • The purpose of this study was evaluated on achievement of the Target water quality (TWQ) with Load Duration Curve (LDC) as well as materials collected through the implementation of Total Maximum Daily Load (TMDL), targeting 41 unit watersheds in the Nakdong River Basin in korea, and examines the adequacy of the LDC method to evaluate the TWQ by comparing methods through current regulations. It aims to provide basic materials for TMDL development in Korea. This determination resulted from the fact that the measured data placed on the LDC mean that they are beyond TWQ in a certain condition of water flow when actually measured load values were displayed in a form of LDC. In addition to water quality surveys, it is considered that information on the level of damage in a water body by water flow grade can be utilized as a basic material to identify compliance with the total admitted quantity, and establish rational plans to improve water quality. This information helps in the identification of the degree of damage in water quality according to water flow.

Comparative Study on Evaluating Standard Flow in Partially Gauged and Ungauged Watershed (부분계측 및 미계측 유역에서 기준유량 산정 방법 비교 연구)

  • Kim, Gyeonghoon;Kim, Jeongmin;Jeong, Hyunki;Im, Taehyo;Kim, Seongmin;Kim, Yongseok;Seo, Mijin
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.481-496
    • /
    • 2019
  • The Ministry of Environment has measured streamflow at eight-day intervals for the estimation of standard flow of the Total Maximum Daily Loads (TMDL) system. This study identified the availability of the partially measured the eight-day interval data for estimating standard flow and found the optimal extension techniques of standard flow. The study area was selected for the Nakbon-A watershed in the Nakdong River, and four streamflow record extension techniques of standard flow were considered: extension, percentile, drainagearea, and regional regression methods. The flow duration curve (FDC) using the eight-day interval streamflow data indicated very high Nash and Sutcliffe Efficiency (NSE) values above 90 % from FDC-II to FDC-VII compared to FDC-VIII, the standard FDC. This result demonstrates that FDC using daily data of three-six cumulative years could represent standard FDC fairly well. For the streamflow record extension techniques of standard flow, the percentile method was selected as the optimal alternative, showing the minimal difference from FDC-VIII. These results validate the availability of the eight-day interval streamflow data in the standard flow estimation and the application of extension techniques. It seems that these results could reduce the uncertainty of partially measured streamflow data for water quantity and quality management.

A Study on Construction of the CMELDC at Load Points (각 부하지점별 유효부하지속곡선 작성법에 관한 연구)

  • Kim, Hong-Sik;Mun, Seung-Pil;Choe, Jae-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.4
    • /
    • pp.195-198
    • /
    • 2000
  • This paper illustrates a new method for constructing composite power system effective load duration curve(CMELDC) at load points. The main concept of proposed method is that the CMELDC can be obtain from convolution integral processing of the outage probabilistic distribution function of not supplied power and the load duration curve given at each load point. The effective load duration curve (ELDC) at HLI plays an important part in probabilistic production simulation, reliability evaluation, outage cost assessment and power supply margins assesment for power system planning and operation. And also, the CMELDC at HLII will extend the application areas of outage cost assessment and reliability evaluation at each load point. The CMELDC at load points using the Monte Carlo method and a DC load flow constrained LP have already been developed by authors. The effective load concept at HLII, however, has not been introduced sufficiently in last paper although the concept is important. In this paper, the main concept of the effective load at HLII which is proposed in this study is defined in details as the summation of the original load and the probabilistic loads caused by the forced outage of generators and transmission lines at this load point. The outage capacity probabilistic distribution function at HLII can be obtained by combining the not supplied powers and the probabilities of the not supplied powers at this load point. It si also expected that the proposed CMELDC can be applied usefully to research areas such as reliability evaluation, probabilistic production cost simulation and analytical outage cost assessment, etc. at HLII in future. The characteristics and effectiveness of this methodology are illustrated by case study of IEEE-RTS.

  • PDF

Application of the Load Duration Curve (LDC) to Evaluate the Rate of Achievement of Target Water Quality in the Youngsan · Tamjin River Watersheds (부하지속곡선(LDC)을 이용한 영산강 · 탐진강수계 오염총량관리 목표수질 평가방법 적용 방안)

  • Cheong, Eunjeong;Kim, Hongtae;Kim, Yongseok;Shin, Dongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.4
    • /
    • pp.349-356
    • /
    • 2016
  • Total Maximum Daily Loads (TMDLs) System has been used to improve water quality in the Youngsan·Tamjin river basin since 2004. The Basic Policy of TMDLs sets up the standard flow based on the average dry condition or mid-range flow during the last 10 years. However, Target Water Quality (TWQ) assessment on TMDLs has been used to evaluate water quality through eight-day intervals over 36 times a year. The results for allocation evaluation and target water quality evaluation were different from each other in the same unit watershed during the first period. In order to improve the evaluation method, researchers applied Load Duration Curve (LDC) to evaluate water quality in nine unit watersheds of the Youngsan·Tamjin river basin. The results showed that achievement rates of TWQ assessment with the current method and LDC were 67~100% and 78~100%, respectively. Approximately 11% of the achievement rates with use of LDC were higher than those with use of the current method. In conclusion, it is necessary to review the application of the LDC method in all Four Major River Watersheds.

Analysis of Load Duration Curve Using Long Time Flow Measurement Data of Kyeongancheon (장기간 유량측정 자료를 이용한 경안천의 부하지속곡선 특성)

  • Noh, Changwan;Kwon, Phil-Sang;Jung, Woo-Seok;Lee, Myung-Gu;Cho, Yong-Chul;Yu, Soonju
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.1
    • /
    • pp.35-48
    • /
    • 2019
  • Long term flow measurement and water quality analysis data need to determine the target and allowable load for each basin in Total Water Pollution Load Management System (TWPLMS). The Load Duration Curve (LDC) is analyzed the relationship between flow data and water quality, and evaluates the pollutant load characterization by flow conditions. LDC of Kyeongancheon is created by the Flow Duration Curve (FDC) that was analyzed 8-day interval measured flow data from 2006 to 2015 and numeric water quality target in Kyeongancheon. As a result of this study, it is necessary to manage the point source pollutant because the numeric water quality target is not satisfied in the low flows. Also the numeric water quality target has been exceed for four months from March to June of the year and continuous and systematic watershed management is required to satisfy the numeric water quality target.

Study of Air Flow Effects on Heat Characteristics of Warm Needle Acupuncture (온침 열특성의 기류 영향에 관한 연구)

  • Kim, Jung-Wo Roy;Lee, Hye-Jung;Yi, Seung-Ho
    • Korean Journal of Acupuncture
    • /
    • v.27 no.4
    • /
    • pp.35-47
    • /
    • 2010
  • Objectives : To characterize the thermal properties of traditional warm needle and new warm needle with various air flows as an important environmental factor and to suggest the necessity of maintaining suitable environment of clinics to maximize their efficacy. Methods : We measured the temperature characteristics of traditional moxa warm needle and new moxa charcoal warm needle by applying an automatic temperature acquisition system with thermocouples while external various air flows were supplied. Temperatures of two positions at the needle body were measured while a moxa cone burned. Typical temperature characteristics like peak temperature, duration, curve shape and the efficiency of the heat stimuli by heat amount analysis were executed. Results : Both warm needles showed similar temperature curve with an increase in the air flow. Peak temperature and duration of effective heat decreased with the air flow, as shown in indirect moxibustion on garlic. The temperature change pattern by the air flow became more apparent when the total combustion heat was compared with the effective heat. The values from two positions on the needle body were significantly different, showing a distance dependency from the heat source of warm needle acupuncture. Conclusions : Thermal properties of warm needle acupuncture was observed variously with surrounding air flow of 0.0 - 0.7 m/s. It emphasized the importance of environmental control as well as the warm needle itself such as heat source and needle. The latter has already been known to deliver designated heat to subjects. It also indicated the importance of education and skill of the practitioners of warm needle acupuncture.

Study of the Lower Duration Curve Characteristic by Reservoir and Weir Couple-operating System in Geum River Basin (금강수계 댐과 보의 운영에 의한 하류 유황특성 연구)

  • Ahn, Jung-Min;Cha, Kee-Uk;Ryoo, Kyong-Sik;Lyu, Si-Wan
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.4
    • /
    • pp.285-293
    • /
    • 2011
  • This study presents effects of downstream control point by coupled operation of dams and multi function weirs in the Geum River. Geum river basin that study area did authoritativeness high quality data to acquisition possibility. We applied the flow duration curve, flow regime coefficient, impounded flow index analysis to investigate the quantitative changes in natural flow regimes. In sphere that water supply is possible, this study applied believability that satisfy 95% at estimation year. Impounded flow index was calculated 0.292 by dam coupled operation and 0.297 by dam-weir coupled operation. The results indicate that the storage amount is increased by 29.7% as being added. Duration flow of downstream control point was improved because became coupled operation by regulation of dam and weir in the geum river.

Application of Detention and Infiltration-based Retention Hybrid Design Technique to Oncheon Stream (유수지 및 침투기반 저류지 복합설계기법의 온천천 유역 적용)

  • Choi, Chi Hyun;Kim, Eungseock;Kim, Jin Kwan;Kim, Sangdan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2B
    • /
    • pp.99-108
    • /
    • 2011
  • In this study a hybrid design scheme for the purpose of designing infiltration-based retentions and a detention is applied to reproduce urban hydrologic regime to natural hydrologic regime. The proposed method is based on the NRCS-CN stormwater estimation technique, and applied to determine the size for stormwater control facilities on the Oncheon stream as an example. Urban area, corresponding to less than 70 m height of the Oncheon stream basin area is targeted. The results indicate that the proposed scheme is very useful to reproduce its undeveloped flow-duration curve.