• Title/Summary/Keyword: Flow Control Valve

Search Result 701, Processing Time 0.036 seconds

A Study on the Design and the Dynamic Characteristics of Electro-Hydraulic Flow Control Servo Valve (전자유압 서보 유량제어밸브의 설계 및 동특성 향상에 관한 연구)

  • 김고도;김수태
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.151-160
    • /
    • 2000
  • An experimental and theoretical analysis for the improvement of dynamic characteristics and design of electro-hydraulic flow control servo valve are performed. The theoretical results are compared with the experimental step responses, and the important design parameters of an electro-hydraulic flow control servo valve are derived by using the simulation program. Simulation parameters of nozzle jet coefficient and orifice and spool valve discharge coefficient are given through experiment. The theoretical and experimental step response curves show that the valve gain depends on the fixed orifice and nozzle $ratio(R_on)$ and is maximum at $R_on=1.$ And drain orifice in the flapper - nozzle return line creates a small back pressure, which improves the performance fur the valve.

  • PDF

Investigation on cavitating flow and parameter effects in a control valve with a perforated cage

  • Wang, Hong;Zhu, Zhimao;Zhang, Miao;Li, Jie;Huo, Weiqi
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2669-2681
    • /
    • 2021
  • Valve is widely used in the various industry areas to adjust and control the flow. Cavitation frequently takes place and sometimes is inevitable in various types of valve to cause the erosion damage. Therefore, how to control and minimize the effect of cavitation is still an important topic. This study numerically investigates the cavitating flow in a control valve with a perforated cage. The effects of some parameters on the cavitation are discussed. It also discusses to use the throttling steps to govern the cavitating flow. The results show that the opening degree of valve and the length of downstream divergent connection both influence the cavitation. The increase of the divergent length reinforces the cavitation. And the larger the opening of valve is, the intenser the cavitation is and the more vapor is present. The more throttling steps are helpful to decrease the cavitation.

A Study on the Noise Reduction and Performance Improvement of the Hot Water Distributing System (시스템분배기 소음방지 및 성능개선방안 연구)

  • Kim, Yong-Ki;Lee, Tae-Won;Han, Tae-Su;Yoo, Sun-Hak
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1055-1060
    • /
    • 2009
  • Noise is one of the major environmental problems in human life. But hot water distributers with the flow rate control valve bring about often noise according to the heating control condition in residential buildings. The sound power level increased as the flow rate and pressure difference increased. And thus, experimental analyses for the flow rate control and the pressure difference control were carried out in this study to reduce the noise emitted from the flow rate control valve. As the results, the flow rate control method using a SMA(Shape Memory Alloy)-valve and the flow rate control system using a pressure difference sensor can be expected to control noise in the region of below 50 dB of sound power level.

  • PDF

A Study on the Development of Mathematical Model of Three-stage Flow Control Valve

  • Khan, Haroon Ahmad;Kang, Chang Nam;Yun, So Nam
    • Journal of Drive and Control
    • /
    • v.15 no.2
    • /
    • pp.38-45
    • /
    • 2018
  • In this study, the theory of fluid mechanics and dynamics is used to build a mathematical model for a three-stage flow control valve. The significance of the study is that the mathematical model can easily be used to study the effect of different design parameters on the performance of the valve. The geometry of the valve and the properties of the fluid were used in this study to determine the variation in the performance of the valve when varying the magnetic force on the pilot spool. While a linearization technique is not used to solve the developed model, the solution of the mathematical model is found in the time domain by simulation of the equations using a software package. The results indicate that if the developed mathematical model is solved for the different values of magnetic force, the valve behaves linearly; the valve is thus called the proportional flow control valve.

A Study on the Improvement of Flow Characteristics of the Glove Valve for Compressible Fluid (압축성 유체용 글로브 밸브의 유량특성 향상에 관한 연구)

  • Bae, Ji Won;Chung, Woo Young;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.32-37
    • /
    • 2019
  • Glove valves are used for various purposes in the process control field because such valves enable easy control of temperature and pressure. However, such valves are associated with significant loss of pressure and also have the disadvantage of complicating the shape of the cage or plug to facilitate linear flow rate change. In this paper, the shape of the plug, one of the valve flow control elements, was designed to improve the flow characteristics of the glove valve, and then CFD analysis was performed using compressible fluid. The numerical analysis results of the glove valve were analyzed according to the opening ratio and the pressure ratio of the valve. From these results, it was found that the proper notch on the side of the plug contributed to reducing the energy loss of the fluid through the valve and improving the linearity of the valve.

A Study on a Novel Flow Control Valve for Wind Power Heat Generation Hydraulic Systems (풍력 열발생 유압 시스템을 위한 새로운 유량제어밸브에 관한 연구)

  • Choi, Sae Ryung;Lee, Ill Yeong;Han, Bong Jun
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • A wind power heat generation system that converts wind power directly to heat instead of electric power is considered in this study. The system consists of a wind turbine part and a heat generation part. The heat generation part is materialized by a hydraulic system including a hydraulic pump, a flow control valve, a hydraulic oil tank, etc. The flow control valve primarily converts hydraulic energy generated in the pump to heat energy. It should have a function of overspeed protection under excessive wind speeds. In this study, a novel flow control valve design is proposed for excellent flow control characteristics under excessive pump driving torque (excessive wind speed). The performance of the suggested valve is analyzed using numerical simulation.

The Analysis of Dynamic Characteristics and the Control of Compressed Gas Expulsion System Using Electro-Hydraulic Servo Valve (전기.유압 서보밸브를 이용한 압축가스 방출시스템의 동특성 해석 및 제어)

  • Kim Y.M.;Kim J.K.;Han M.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.710-714
    • /
    • 2005
  • A dynamical analysis and PID control of a compressed gas expulsion system is performed. The purpose of this study is to develop a compressed gas discharging system and to verify the validity of the system. The electro-hydraulic servo valve is modeled as a 3th order transfer function to calculate flow force affecting expulsion valve is significantly considered. The friction force in the expulsion valve is considered as a nonliner model of stribeck effect. The dynamic characteristics of this system is examined by the computer simulation. The position control of the expulsion valve is performed by PID controller.

  • PDF

A Study on the Flow Characteristics inside a Glove Valve for Ships (선박용 글로브 밸브의 유동특성에 관한 연구)

  • Bae, Ki-Hwa;Park, Jea-Hyoun;Kang, Sang-Mo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.110-118
    • /
    • 2008
  • It is essential for the valid design of a marine flow-control valve to exactly know its flow characteristics. The present study has numerically investigated the flow characteristics inside a marine throttle-type globe valve using a kind of commercial CFD code, CFX10.0, with an adoption of the SST (Shear-Stress Transport) turbulence model. To validate the numerical approach, the flow coefficients are compared with the experimental ones. Results show that the globe valve is effective in the control of flow rate according to the opening ratio in case of the forward-direction flow, whereas it is effective in the flow shutoff in case of the reverse-direction flow. Around the inlet of the valve, a recirculation region is formed due to the blunt body shape, the turbulence intensity becomes strengthened and then an abrupt pressure loss occurs.

Auto Flow Rate Regulating System Synchronized with Room Control (난방시 실별 연동형 세대자동유량제어 시스템)

  • Kim, Young-Kyun;Kim, Nam-Gun;Seo, Bum-Suk
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.77-82
    • /
    • 2009
  • If we can supply accurate minute flow rate to the households, we can solve many problems that are occurring in consequences of uncontrolled flow rate for the households. Therefore, this paper presents an innovative solution to the source of the problems by illustrating how we can control the flow rate to the household. This paper proves such problems even can be solved in a case when there is a room turned off the heating.

  • PDF

A Study on the Numerical Analysis of Internal Flow in a Cone Type Valve (Cone Type 밸브 내부유동 수치해석에 관한 연구)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.199-207
    • /
    • 2020
  • These days, many different types of valves are developed in the industrial area according to their use purpose. Multiple kinds of valves are installed to control a flow and pressure of the pipe conveying fluid. Valves serve as critical roles in land plants such as power plants. The performance of equipment varies depending on valve characteristics. In this study, the internal flow analysis on Cone-type valve is conducted to analyze flow field and secure a value of the flow coefficient Cv. According to the internal flow analysis, when the flow distribution of the middle cross-section of valve was open 100%, flow field was relatively and smoothly taken out. If it was open 50%, flow recirculation region increased and a little complex flow field occurred. Unlike ball valve or butterfly valve, this valve had flow recirculation in its outlet depending on a valve opening amount. Therefore, it was found that there was no flow recirculation in the outlet of Cone-type valve.