• Title/Summary/Keyword: Flow Control Servo Valve

Search Result 63, Processing Time 0.027 seconds

A Study on Characteristics of Flow Control Servo Valve with no Drain Orifice (드레인 오리피스가 없는 유랑제어 서보밸브의 특성에 관한 연구)

  • Yun, So-Nam;Gang, Bo-Sik;Seong, Baek-Ju;Kim, Hyeong-Ui
    • 연구논문집
    • /
    • s.26
    • /
    • pp.85-94
    • /
    • 1996
  • The purpose of this study is to bring out the optimal design factors which effect on dynamic characteristics in the design of proportional flow control valve with high response characteristics, and to verify the validity of the design factors. In this study, force feedback type flow control valve with nozzle-flapper is studied. And, the influences which fixed orifice, nozzle diameter, and maximum displacement between nozzle and flapper effect on dynamic characteristics are analyzed. We have done simulations using the optimal design factors and simulink(Matlab) as a simulation tool, and verified the validity of our simulations by means of comparison our simulation results with an experimental results of another similar valve.

  • PDF

The Study of the Design of a Hydraulic Torque Load Simulator Equipped with a Direct Drive Servo Valve and a Feed forward Compensator (직접 구동형 서보밸브와 전진 보상기를 적용한 유압식 토크 부하 시뮬레이터의 설계에 관한 연구)

  • Lee, Seong Rae
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.16-27
    • /
    • 2018
  • Hydraulic torque load simulator is essential to test and qualify the performance of various angle control systems. Typically a flapper-type second stage servovalve is applied to the load simulator, but here the direct drive servovalve, which is a kind of one-stage valve and affected by the large flow force, is applied. Since the torque load is applied not to the stationary shaft but to the rotating shaft of the angle control system, the controlled torque of load simulator is not accurate due to the rotating speed of the angle control system. A feedforward compensator is designed and applied to minimize the disturbance-like effect. A mathematical model is derived and linearized to analyze the stability, accuracy and responsiveness of the torque load simulator. The parameter effects of a controller, servovalve, hydraulic motor, rotating spring shaft are analyzed and summarized. The goodness of the linear analysis is verified by the digital computer simulations using both the linear and nonlinear mathematical models.

Controller Parameters Design of Direct Drive Servo Valve Using Genetic Algorithm and Complex Method (유전자 알고리즘과 콤플렉스법에 의한 직접구동형 서보밸브의 제어기 상수값 설계)

  • Lee, Seong Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.475-481
    • /
    • 2013
  • The control system of a direct drive servo valve is a nonlinear system, and the flow force effect on the spool motion is significant and dependent on the load pressure. To satisfy the control system design requirements, the optimal parameters of the lead-lag controller and the derivative feedback controller are searched for using a genetic algorithm and a complex constrained direct search type method. The obtained controller parameters successfully perform their role to satisfy the control system design requirements.

Setup Procedure of Dump Valve for Full-Scale Airframe Test (전기체 구조시험의 덤프밸브 조절절차 개발;)

  • Kim, Sung-Chan;Kim, Sung-Jun;Hwang, In-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1252-1257
    • /
    • 2003
  • This paper present a procedure of meter-out flow control method for dump valve in full-scale airframe test. Emergency stop, which results in dump state, can be happened during full-scale airframe test by several causes. Because servo valve can't control hydraulics actuator in the dump state, pressure in cylinder chamber may rise abruptly and overload can be acted to the test article. In this paper, the procedure and technology of orifice setting are investigated to protect the test article from unexpected loads by dump. The test results show that the presented methods decrease peak loads and improve unloading characteristics of hydraulic actuators in the dump state.

  • PDF

Classical Controller Design of Direct Drive Servo Valve Using Analytical Bode Method (해석적 Bode 방법에 의한 직접구동형서보밸브의 고전적 제어기 설계)

  • Lee, S.R.;Choi, H.Y.;Moon, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.507-514
    • /
    • 2001
  • Direct drive servovalve(DDV) is a kind of one-stage valve since the rotary motion of DC motor is directly transferred to the linear motion of valve spool through the link. Since the structure of DDV is simple, it is less expensive, more reliable and offers reduced internal leakage and reduced sensitivity to fluid contamination. However, the flow force effect on the spool motion is significant such that it induces large steady-state error in a step response. If the proportional control gain is increased to reduce the steady-state error, the system becomes unstable. In order to satisfy the system design requirements, the classical controller is designed using the analytical Bode method.

  • PDF

Lead-Lag Controller Design of Direct Drive Servo Valve Using Complex Method (컴플렉스법에 의한 직접구동형서보밸브의 진상-지상 제어기 설계)

  • Lee, Seong-Rae
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1590-1595
    • /
    • 2003
  • Direct drive servovalve(DDV) is a kind of one-stage valve since the rotary motion of DC motor is directly transferred to the linear motion of valve spool through the link. Since the structure of DDV is simple, it is less expensive, more reliable and offers reduced internal leakage and reduced sensitivity to fluid contamination. However, the flow force effect on the spool motion is significant such that it induces large steady-state error in a step response. If the proportional control gain is increased to reduce the steady-state error, the system becomes unstable. In order to satisfy the system design requirements, the lead-lag controller is designed using the complex method that is one kind of constrained direct search method.

  • PDF

Lead-Lag Controller Design of Direct Drive Servo Valve Using Complex Method (컴플렉스법에 의한 직접구동형서보밸브의 진상-지상 제어기 설계)

  • Lee, Seong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1719-1726
    • /
    • 2004
  • Direct drive servovalve(DDV) is a kind of one-stage valve because the main spool valve is directly driven by the DC motor. Since the structure of DDV is simple, it is less expensive, more reliable and offers reduced internal leakage and reduced sensitivity to fluid contamination. However, the flow force effect on the spool motion is significant such that it induces large steady-state error in a step response. If the proportional control gain is increased to reduce the steady-state error, the system becomes unstable. In order to satisfy the system design requirements, the lead-lag controller is designed using the complex method that is one kind of constrained direct search method.

Classical Controller Design of Direct Drive Servo Valve Using Analytical Bode Method (해석적 Bode 방법에 의한 직접구동형서보밸브의 고전적 제어기 설계)

  • Lee, Seong-Rae;Choe, Hyeon-Yeong;Mun, Ui-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.754-763
    • /
    • 2002
  • Direct drive servovalve(DDV) is a kind of one-stage valve since the rotary motion of DC motor is directly transferred to the linear motion of valve spool through the link. Since the structure of DDV is simple, it is less expensive, more reliable and offers reduced internal leakage and reduced sensitivity to fluid contamination. However, the flow force effect on the spool motion is significant such that it induces large steady-state error in a step response. If the proportional control gain is increased to reduce the steady-state error, the system becomes unstable. In order to satisfy the system design requirements, the classical controller is designed using the analytical Bode method.

Study on Flow-Shifted Region Depending on Spool Displacement in Hydraulic Servo Valve with Hybrid Lap (하이브리드 랩 방식 유압 서보 밸브의 스풀 변위에 따른 유동 천이 영역에 대한 연구)

  • Jeong, Hwang-Hun;Yun, So-Nam;Lee, Sung-Soo;Yang, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.213-219
    • /
    • 2013
  • This study examined the static characteristics of a spool valve with a hybrid lap between the spool land and the sleeve. The static equation for the pressure characteristics was derived from flow equations that depend on the spool displacement, and the final model was derived from $q_a=q_b=0$ because the pressure characteristics test needs to block the control port in the valve. The static equation for the flow characteristics was derived from the pressure characteristics when the control port is open ($q_a=q_b$, $p_a=p_b$). The characteristic equation in the shifted region was assumed from the proportional relationship between the pressure-flow characteristics and the spool displacement.

Independent Metering Valve: A Review of Advances in Hydraulic Machinery

  • Nguyen, Thanh Ha;Do, Tri Cuong;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.54-71
    • /
    • 2020
  • In light of the environmental challenges, energy-saving strategies are currently under investigation in the construction industry. This paper focuses on the energy-saving method used in the hydraulic system based on independent metering (IM) technologies, which can overcome the lost energy at the main control valve of the conventional electrohydraulic servo system. By scientifically arranging the proportional valves, the IM system can individually control the flow rate of the inlet and the outlet ports of the actuators. In addition, the IMV system can be used to effectively regenerate energy under different operating modes, thereby saving more energy than conventional hydraulic systems. Therefore, the IMV system has a great potential to improve the energy efficiency of hydraulic machinery. The overall IMV system, including the configuration, proportional valve, operation mode, and the control strategy is introduced via state-of-the-art hydraulic technologies. Finally, the challenges of IM systems are discussed to provide researchers with directions for future development.