• 제목/요약/키워드: Flow Condensation

검색결과 392건 처리시간 0.024초

PASSlVE SHOCK CONTROL IN TRANSONIC FLOW FIELD

  • Matsuo S;Tanaka M;Setoguchi T;Kashimura H;Yasunobu T;Kim H.D
    • 한국전산유체공학회지
    • /
    • 제10권1호
    • /
    • pp.80-86
    • /
    • 2005
  • In order to control the transonic flow field with a shock wave, a condensing flow was produced by an expansion of moist air on a circular bump model and shock waves were occurred in the supersonic parts of the fields. Furthermore, the additional passive technique of shock-boundary layer interaction using the porous wall with a cavity underneath was adopted in this flow field. The effects of these methods on the shock wave characteristics were investigated numerically. The result showed that the flow fields might be effectively controlled by the suitable combination between non-equilibrium condensation and the position of porous wall.

Passive Shock Control in Transonic Flow Field

  • Matsuo S.;Tanaka M.;Setoguchi T.;Kashimura H.;Yasunobu T.;Kim H. D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.187-188
    • /
    • 2003
  • In order to control the transonic flow field with shock wave, a condensing flow was produced by an expansion of moist air on a circular bump model and shock waves were occurred in the supersonic parts of the fields. Furthermore, the additional passive technique of shock - boundary layer interaction using the porous wall with a cavity underneath was adopted in this flow field. The effects of these methods on the shock wave characteristics were investigated numerically. The result showed that the flow fields might be effectively controlled by the suitable combination between non-equilibrium condensation and the position of porous wall.

  • PDF

탄화수소계 냉매들과 DME의 수평 평활관내 흐름 응축 열전달 특성 (Flow Condensation Heat Transfer Characteristic of Hydrocarbon Refrigerants and DME in Horizontal Plain Tube)

  • 박기정;이민행;박현신;정동수
    • 설비공학논문집
    • /
    • 제19권7호
    • /
    • pp.545-554
    • /
    • 2007
  • Flow condensation heat transfer coefficients(HTCs) of R22, propylene, propane, DME and isobutane are measured on a horizontal plain tube. The main test section in the experimental flow loop is made of a plain copper tube of 9.52 mm outside diameter and 530 mm length. The refrigerant is cooled by passing cold water through an annulus surrounding the test section. Tests are performed at a fixed refrigerant saturation temperature of $40{\pm}0.2^{\circ}C$ with mass fluxes of 100, 200, $300kg/m^2s$ and heat flux of $7.3\sim7.7kW/m^2$. The data are obtained in the vapor Quality range of $10\sim90%$. Test results show that at same mass flux the flow condensation HTCs of propylene, propane, DME and isobutane are higher than those of R22 by up to 46.8%, 53.3%, 93.5% and 61.6% respectively. Also well-known correlations developed based upon conventional fluorocarbon refrigerants predict the present data within a mean deviation of 30%. Finally, the pressure drop increase as the mass flux and Quality increase and isobutane shows the highest pressure drop due to its lowest vapor pressure among the fluids tested.

증기터빈 익렬유동의 에너지손실에 관한 실험적 연구 (An Experimental Study on Energy Losses in Steam Turbine Cascade Flow)

  • 안형준;권순범
    • 대한기계학회논문집
    • /
    • 제19권11호
    • /
    • pp.3022-3030
    • /
    • 1995
  • The irreversibility of condensation process in the supersonic flow of steam turbine cascade causes the entropy to increase and the total pressure loss to be generated. In the present study, in order to investigate the moist air flow in two dimensional steam turbine cascade made as the configuration of the last stage tip section of the actual steam turbine moving blade, the static and total pressures along suction side of the blade are measured by pressure taps and Pitot tube. The flow field is visualized by a Schlieren system. The effects of stagnation temperature and the degree of supersaturation on energy loss and entropy change in the flow are clearly identified.

Condensation Heat Transfer of R22, R407C, and R410A in Slit Fin-and-Tube Heat Exchanger

  • Jeon, Chang-Duk;Lee, Jin-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권4호
    • /
    • pp.188-198
    • /
    • 2003
  • R410A and R407C are considered to be alternative refrigerants of R22 for the air-conditioners. An experimental study is carried out to investigate the effect of the change of mass flow rate on the characteristics of heat transfer and pressure drop in three row slit finned-tube heat exchanger for R407C, R410A and R22. R407C, a non-azeotropic refrigerant mixture, exhibited a quite different condensation phenomenon from those of R22 and R410A and its condensation heat transfer coefficient was much lower than that of R22 and R410A. On the other hand, the condensation heat transfer coefficient of R410A, near-azeotropic refrigerant mixture, was a little higher than that of R22. R410A also showed the lowest condensation pressure drop across the test section. For all refrigerants, the condensation heat transfer coefficient and pressure drop increase as the mass flux increases. The condensation heat transfer coefficient correlation proposed by Kedzierski shows the best agreement with the experimental data within $\pm$20%.

마이크로채널 내의 FC-72 흐름응축에 관한 수치적 연구 (Numerical Study on FC-72 Condensing Flow in a Micro-Channel)

  • 김성민
    • 한국가시화정보학회지
    • /
    • 제13권1호
    • /
    • pp.30-34
    • /
    • 2015
  • This study concerns flow and heat transfer characteristics of FC-72 condensing flow in a micro-channel. A computational model of condensing flow with a hydraulic diameter of 1 mm is constructed using the FLUENT computational fluid dynamics code. The computed void fraction contour plots are presented for different mass velocities. The smooth-annular, wavy-annular, transition and slug flows are observed with the model, which are quite similar to those observed in a micro-channel experiment. The computed two-phase condensing heat transfer coefficient is compared with previous empirical correlation for two-phase condensation heat transfer in micro-channels.

Similarity and Approximate Solutions of Laminar Film Condensation on a Flat Plate

  • Lee, Sung-Hong;Lee, Euk-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권9호
    • /
    • pp.1339-1345
    • /
    • 2001
  • Laminar film condensation of a saturated pure vapor in forced flow over a flat plate is analyzed as boundary layer solutions. Similarity solutions for some real fluids are presented as a function of modified Jakob number (C$\_$pι/ ΔΤ/Prh$\_$fg/) with property ratio (No Abstract.see full/text) and Pγ as parameters and compared with approximate solutions which were obtained from energy and momentum equations without convection and inertia terms in liquid flow. Approximate solutions agree well with the similarity solutions when the values of modified Jakob number are less then 0.1 near 1 atmospheric pressure.

  • PDF

냉매 R-22, R-407C의 수평평활관내 응축압력강하에 관한 연구 (Pressure drop of R-22 and R-407C during condensation in horizontal smooth tubes)

  • 노건상;오후규;권옥배
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.70-80
    • /
    • 1996
  • Experimental results for forced convection condensation of R-22 and R-407C inside 7.5mm ID and 4000mm length of horizontal tubes are presented. The experimental data covered total flow rate from 114.3 to 267.1kg/($m^2$.s) and quality from 0 to 1. The vapor temperature and pressure drop along the tube were measured. The pressure drop for R-407C increased with flow rate similar to that of R-22. The experimental data compared with the available perdictions for pressure drop. Based on the data a prediction method was presented for the calculation of pressure drop of R-22 alternative refrigerants.

  • PDF

강제환기를 적용한 이글루형 탄약고 저장환경 개선에 관한 수치적 연구 (Numerical Study on Improvement of Storage Environment of Igloo-Shaped Magazine Using Forced Ventilation)

  • 윤해든;김성훈
    • 한국군사과학기술학회지
    • /
    • 제24권1호
    • /
    • pp.99-106
    • /
    • 2021
  • This study explores the improvement of storage environment of igloo-shaped magazine using forced ventilation. Conjugate heat transfer analysis of forced convection and conduction are performed to calculate the flow, temperature, and relative humidity field in igloo-shaped magazine. Through the conjugate heat transfer analysis, the effects of inlet vent, volume flow rates of jet, and jet angles on the condensation and relative humidity are numerically investigated. The area of condensation in igloo-shaped magazine and relative humidity at the surface of ammunitions are then calculated.