• Title/Summary/Keyword: Flow Collision

Search Result 231, Processing Time 0.028 seconds

A Study on Development of Maritime Traffic Assessment Model (해상교통류 평가모델 개발에 관한 연구)

  • Kim, Kwang-Il;Jeong, Jung Sik;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.761-767
    • /
    • 2012
  • Maritime traffic assessment is important to understand the characteristics of maritime traffic and to prevent maritime accidents. The maritime traffic assessment can be calculated from the ship trajectory data observed by using AIS(Automatic Identification System). This paper developes a maritime traffic assessment tool using ship's position and speed, course, time data from ships navigating waterways. The results are represented in terms of the number of traffic quantity and traffic distribution, speed distribution, geometric collision candidates. The developed tool will contributes to advance maritime traffic safety by VTS(Vessel Traffic Services).

Resource Allocation Algorithm for Throughput Enhancement in IEEE 802.11e (IEEE 802.11e의 전송률 향상을 위한 자원할당 알고리듬)

  • Joung, Soo-Kyoung;Park, In-Kap
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.4
    • /
    • pp.63-70
    • /
    • 2010
  • In IEEE 802.11e system providing differentiated services, there exist some problems as follows; collision probability increase due to the increase in the number of nodes by employing CSMA/CA transmission mode, transmission speed declining tendency towards the worst of it, which is caused by different transmission mode and decrease of TCP transmission rate as the result of the link occupancy by UDP when TCP shares the link with UDP by the TCP’s flow control characteristic. In this thesis, the initial minimum and maximum CW are set differently according to the number of connected nodes in the network to avoid collisions and TXOP is adjusted according to the channel state, in which ACs with low priority but better channel state will get gradually more chances to transmit leading to optimal channel capacity. Also, by allowing higher priority for ACK frames which control the TCP transmission, the flow control becomes better because that reduces the channel occupancy by UDP flow, and by this, fair transmission is obtained from the result of the more fair transmission and active resource allocation.

Numerical Simulation of the Coalescence of Air Bubbles in Turbulent Shear Flow: 2. Model Application (난류전단 흐름에서의 기포응집에 관한 수치모의: 2. 모형의 적용)

  • Jun, Kyung Soo;Jain, Subhash C.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1365-1373
    • /
    • 1994
  • A Monte-Carlo simulation model, developed to predict size distribution of air bubbles in turbulent shear flow, is applied to a laboratory-scale problem. Sensitivity to various numerical and physical parameters of the model is analyzed. Practical applicability of the model is explored through comparisons of results with experimental measurements. Bubble size increases with air-water discharge ratio and friction factor. Bubble size decreases with increasing mean flow velocity, but the total bubble surface area in the aeration region remains fairly constant. The effect on bubble size distribution of the longitudinal length increment in the simulation model is negligible. A larger radial length increment yields more small and large bubbles and fewer in between. Bubble size distribution is significantly affected by its initial distribution and the location of air injection. Collision efficiency is introduced to explain the discrepancy between collisions with and without coalescence.

  • PDF

Video Based Tail-Lights Status Recognition Algorithm (영상기반 차량 후미등 상태 인식 알고리즘)

  • Kim, Gyu-Yeong;Lee, Geun-Hoo;Do, Jin-Kyu;Park, Keun-Soo;Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.10
    • /
    • pp.1443-1449
    • /
    • 2013
  • Automatic detection of vehicles in front is an integral component of many advanced driver-assistance system, such as collision mitigation, automatic cruise control, and automatic head-lamp dimming. Regardless day and night, tail-lights play an important role in vehicle detecting and status recognizing of driving in front. However, some drivers do not know the status of the tail-lights of vehicles. Thus, it is required for drivers to inform status of tail-lights automatically. In this paper, a recognition method of status of tail-lights based on video processing and recognition technology is proposed. Background estimation, optical flow and Euclidean distance is used to detect vehicles entering tollgate. Then saliency map is used to detect tail-lights and recognize their status in the Lab color coordinates. As results of experiments of using tollgate videos, it is shown that the proposed method can be used to inform status of tail-lights.

A Comparative Study of Numerical and Theoretical Predictions of Oil Outflows from Damaged Ships (손상 선박 기름 유출량 추정을 위한 수치해석과 이론식의 비교 연구)

  • Yo-Seop, Moon;Je-In, Kim;Il-Ryong, Park;Seong-Bu, Suh;Seung-Guk, Lee;Hyuek-Jin, Choi;Sa-Young, Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.400-412
    • /
    • 2022
  • This paper provides the results of numerical and theoretical predictions of oil outflows from damaged single-hull and double-hull ships.Theoretical equations derived from the unsteady Bernoulli equation and a CFD method for multi-phase flow analysis were used to estimate the oil outflow rate from cargo tank. The predicted oil outflow rate from a single-hull cargo tank damaged due to grounding and collision accidents showed a good agreement with the available experimental results in both numerical and theoretical analyses. However, in the case of the double-hull conditions, the time variation of the amount of water and oil mixture inside the ballast tank predicted by the theoretical equation showed some different behavior from the numerical results. The reason was that the interaction of the oil flow with the water inflow in the ballast tank was not reflected in the theoretical equations. In the problems of the initial pressure condition in the cargo and ballast tanks, the oil outflow and water inflow were delayed at the pressure condition that the tanks were sealed. When the flow interaction between the oil and water in the ballast tank was less complicated, the theoretical and the numerical results showed a good agreement with each other.

Design of Traffic Control Scheme for Supporting the Fairness of Downstream in Ethernet-PON (이더넷 기반 광가입자망에서 공평성 보장을 위한 하향 트래픽 제어 기법 설계)

  • Han Kyeong-Eun;Park Hyuk-Gu;Yoo Kyoung-Min;Kang Byung-Chang;Kim Young-Chon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.84-93
    • /
    • 2006
  • Ethernet-PON is an emerging access network technology that provides a low-cost method of deploying optical access lines between OLT and ONUs. It has a point-to-multipoint and multipoint-to-point architecture in downstream and upstream direction, respectively. Therefore, downstream packets are broadcast from an OLT toward all ONUs sithout collision. On the other hand, since alt ONUs share a common channel, the collision may be occurred for the upstream transmission. Therefore, earlier efforts on Ethernet-PON have been concentrated on an upstream MAC protocol to avoid collision. But it is needed to control downstream traffic in practical access network, where the network provider limits available bandwidth according to the number of users. In this paper, we propose a traffic control scheme for supporting the fairness of the downstream bandwidth. The objective of this algorithm is to guarantee the fairness of ONUs while maintaining good performance. In order to do this, we define the service probability that considers the past traffic information for downstream, the number of tokens and the relative size of negotiated bandwidth. We develop the simulation model for Ethernet-PON to evaluate the rate-limiting algorithm by using AWESIM. Some results are evaluated and analyzed in terms of defined fairness factor, delay and dropping rate under various scenario.

A Basic Study on Prediction Module Development of Collision Risk based on Ship's Operator's Consciousness (선박운항자 의식 기반 충돌 위험도 예측 모듈 개발에 관한 연구)

  • Park, Young-Soo;Park, Sang-Won;Cho, Ik-Soon
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.199-207
    • /
    • 2015
  • In ports of Korea, the marine traffic flow is congested due to a large number of vessels coming in and going out. In order to improve the safety and efficiency of these vessels, South Korea is operating with a Vessel Traffic Service System, which is monitoring its waters for 24 hours. However despite these efforts of the VTS (Vessel Traffic Service) officers, collisions are occurring continuously, the risk situation is analyzed that occurs once in about 20 minutes, the risk may be greater. It investigated to reduce these accidents by providing a safety standard for collision danger in a timely manner. Thus, this study has developed a risk prediction module to predict risk in advance. This module can avoid collision risk to adjust the speed and course of ship using a risk evaluation model based on ship operator's risk perspective. Using this module, the ship operators and VTS officers can easily be identified risks in complex traffic situations, so they can take an appropriate action against danger in near future including course and speed change. To verify the effectiveness of this module, this paper predicted the risk of each encounter situation and confirmed to be capable of identifying a risk changes in specific course and speed changes at Busan coastal water.

Effect of AC Electric Fields on Flow Instability in Laminar Jets (층류제트유동 불안정성에 미치는 교류 전기장 효과)

  • Kim, Gyeong Taek;Lee, Won June;Cha, Min Suk;Park, Jeong;Chung, Suk Ho;Kwon, Oh Boong;Kim, Min Kuk;Lee, Sang Min
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.3
    • /
    • pp.1-6
    • /
    • 2016
  • The effect of applied electric fields on jet flow instability was investigated experimentally by varying the direct current (DC) voltage and the alternating current (AC) frequency and voltage applied to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configuration, which occur when AC electric fields are applied. The results indicate that a twin-lifted jet flames originates from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as $O_2+e{\rightarrow}O_2{^-}$ when AC electric fields are applied. This was confirmed by experiments in which a variety of gaseous jets were ejected from a nozzle to which DC voltages and AC frequencies and voltages were applied, with ambient air between two deflection plates connected to a DC power source. Experiments in which jet flows of several gases were ejected from a nozzle and AC electric fields were applied in coflow-nitrogen provided further evidence. The flow instability occurred only for oxygen and air jets. Additionally, jet instability occurred when the applied frequency was less than 80 Hz, corresponding to the characteristic collision response time. The effect of AC electric fields on the overall structure of the jet flows is also reported. Based on these results, we propose a mechanism to reduce jet flow instability when AC electric fields are applied to the nozzle.

A Numerical Study on an Optimum Design of a Hybrid Collector Coupled with the Principle of Cyclone, Baffle and Bag-Filter (싸이클론과 배플 및 백필터 원리를 결합한 하이브리드형 집진기의 최적화 설계를 위한 수치해석)

  • Hong, Sung-Gil;Jung, Yu-Jin;Lim, Ki-Hyuk;Yoo, Jeong-Kun;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.983-989
    • /
    • 2013
  • The current research reviewed the design conditions that would maximize the efficiency of the hybrid collector that combines in one unit "cyclone-inertial impaction-bag filter". The computational analysis for the shape of cyclone entry predicts that a design that installs the guide vane at the entry of the tangential type cyclone brings a high-rpm and powerful vortex, very effective in promoting the deflection of coarse particles from the streamline at the cyclone. As the lower part of the cyclone is venturi-shaped, however, a strong flow downward of 4 to 5 m/sec persists through the lower part of the hopper, revealing the likely reentrainment of collected dust. And the removal of the venturi at the lower part of the cyclone would solve the problem of the reentrainment of collected dust. The acceleration of the flow velocity through the adjustment of the gap of the collision baffle would increase the effect of collision, but as the interference with the dust separation is expected, the original design should be kept for the baffle.

A Variable Speed Limits Operation Model to Minimize Confliction at a Bottleneck Section by Cumulative Demand-Capacity Analysis (대기행렬이론을 이용한 병목지점 충돌위험 저감 가변속도제어 운영모형)

  • LEE, Junhyung;SON, Bongsoo
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.5
    • /
    • pp.478-487
    • /
    • 2015
  • This study proposed a Variable Speed Limits(VSL) algorithm to use traffic information based on Cumulative Demand-Capacity Analysis and evaluated its performance. According to the analysis result, the total of delay consisted of 3 separate parts. There was no change in total travel time although the total of delay decreased. These effects was analysed theoretically and then, evaluated through VISSIM, a microscopic simulator. VISSIM simulation results show almost same as those of theoretical analysis. Furthermore in SSAM analysis with VISSIM simulation log, the number of high risk collisions decreased 36.0 %. However, the total delay decrease effect is not real meaning of decrease effect because the drivers' desired speed is same whether the VSL model is operated or not. Nevertheless this VSL model maintains free flow speed for longer and increases the cycle of traffic speed fluctuation. In other words, this is decrease of delay occurrence and scale. The decrease of speed gap between upstream and downstream stabilizes the traffic flow and leads decrease number of high risk collision. In conclusion, we can expect increase of safety through total delay minimization according to this VSL model.