• Title/Summary/Keyword: Flow Choke

Search Result 38, Processing Time 0.024 seconds

A Study of the Gas Flow through a LNG Safety Valve (LNG 안전밸브를 지나는 기체 유동에 관한 연구)

  • Lee, Jun-Hee;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.19-25
    • /
    • 2007
  • A LNG safety valve functions to control a constant pressure inside the LNG line of transportation, and the flow through it accompanies with noise and vibration which affect adversely on the system. The present study aims at understanding the flow physics of LNG safety valve for a practical design of LNG safety valve. A computational work using the two-dimensional, axisymmetric, compressible, Navier-Stokes equations is carried out to simulate the gas flow through the LNG safety valve, and compared with the theoretical results. It is found that the shape of valve sheet and the gap size are the key parameters in determining the gas dynamic forces on the valve sheet, and there exists a distance between nozzle exit and valve sheet in which the thrust coefficient at the valve sheet increases abruptly.

A Fundamental Study of a Variable Critical Nozzle Flow (가변형 임계 노즐유동에 관한 기초적 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.484-489
    • /
    • 2003
  • The mass flow rate of gas flow through critical nozzle depends on the nozzle supply conditions and the cross-sectional area at the nozzle throat. In order that the critical nozzle can be operated at a wide range of supply conditions, the nozzle throat diameter should be controlled to change the flow passage area. This can be achieved by means of a variable critical nozzle. In the present study, both experimental and computational works are performed to develop variable critical nozzle. A cone-cylinder with a diameter of d is inserted into conventional critical nozzle. It can move both upstream and downstream, thereby changing the cross-sectional area of the nozzle throat. Computational work using the axisymmetric, compressible Navier-Stokes equations is carried out to simulate the variable critical nozzle flow. An experiment is performed to measure the mass flow rate through variable critical nozzle. The present computational results are in close agreement with measured ones. The boundary layer displacement and momentum thickness are given as a function of Reynolds number. An empirical equation is obtained to predict the discharge coefficient of variable critical nozzle.

  • PDF

Study of the Unsteady Gas Flow in a Critical Nozzle (임계노즐에서 발생하는 비정상유동에 관한 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.337-345
    • /
    • 2002
  • The present study addresses a computational result of unsteady gas flow through a critical nozzle. The axisymmetric, unsteady, compressible, Wavier-Stokes equations are solved using a finite volume method that makes use of the second order upwind scheme for spatial derivatives and the multi-stage Runge-Kutta integral scheme for time derivatives. The steady solutions of the governing equation system are validated with the previous experimental data to ensure that the present computational method is valid to predict the critical nozzle flows. In order to simulate the effects of back pressure fluctuations on the critical nozzle flows, an excited pressure oscillation with an amplitude and frequency is assumed downstream of the exit of the critical nozzle. The results obtained show that for low Reynolds numbers, the unsteady effects of the pressure fluctuations can propagate upstream of the throat of critical nozzle, and thus giving rise to the applicable fluctuations in mass flow rate through the critical nozzle, while for high Reynolds numbers, the pressure signals occurring at the exit of the critical nozzle do not propagate upstream beyond the nozzle throat. For very low Reynolds number, it is found that the sonic line near the throat of the critical nozzle remarkably fluctuateswith time, providing an important mechanism for pressure signals to propagate upstream of the nozzle throat, even in choked flow conditions. The present study is the first investigation to clarify the unsteady effects on the critical nozzle flows.

  • PDF

The Influence of the Diffuser Divergence Angle on the Critical Pressure of a Critical Nozzle (디퓨저 확대각이 임계노즐의 임계압력비에 미치는 영향)

  • Kim Jae Hyung;Kim Heuy Dong;Park Kyung Am
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.131-134
    • /
    • 2002
  • Compressible gas flow through a convergent-divergent nozzle is choked at the nozzle throat under a certain critical pressure ratio, and then being no longer dependent on the pressure change in the downstream flow field. In practical, the flow field at the divergent part of the critical nozzle can affect the effective critical pressure ratio. In order to investigate details of flow field through a critical nozzle, the present study solves the axisymmetric, compressible, Wavier-Stokes equations. The diameter of the nozzle throat is D=8.26mm and the half angle of the diffuser is changed between $2^{\circ}\;and\;10^{\circ}$ Computational results are compared with the previous experimental ones. The results obtained show that the divergence angle is significantly influences the critical pressure ratio and the present computations predict the experimented discharge coefficient and critical pressure ratio with a good accuracy. It is also found that a nozzle with the half angle of $4^{\circ}$ nearly predicts the theoretical critical pressure ratio.

  • PDF

Analytical Study on the Compressure Flow Through a Double Orifice (이중 Orifice를 지나는 압축성 유동에 관한 해석적 연구)

  • 김희동;김태호;우선훈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.2
    • /
    • pp.41-47
    • /
    • 1997
  • The flow choking in a double orifice is expected to depend on cross-sectional area ratios of the orifices, upstream Mach number and total pressure loss between the orifices. However, no research has been reported on the problems of the compressible flow through a double orifice so far. The present study investigated analytically the choke conditions of the compressible gas through a double orifice, using a simple compressible theory. The orifice area ratio, upstream Mach number, and total pressure loss were involved to find the effects that they have on the flow choking. The results of analytical method show that for orifice area ratios below 1.0, flow choking moves from the first to the second orifice as the total pressure loss increases, however, for orifice area ratios over 1.0, it occurs only at the second orifice.

  • PDF

Investigation of Off-Design Performance of Vaned Diffusers in Centrifugal Compressors - Part II : Low Solidity Cascade Diffuser - (원심압축기용 베인디퓨져의 탈설계점 성능연구 - 제2부 : 솔리디티가 작은 익렬디퓨져 -)

  • Oh, JongSik;Lee, HeonSeok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.91-98
    • /
    • 2001
  • As the second part of the author's study, off-design behavior of the design and performance parameters in the low-solidity cascade diffuser in a centrifugal compressor is investigated. The experimental flange-to-flange compressor map serves the validity of application of the present CFD work to the detailed investigation of the low-solidity cascade diffuser. Some meanline design and performance parameters as well as three-dimensional internal secondary flow fields are studied when the flow rate is changed from deep choke to stall.

  • PDF

Numerical Study on Blockage and Slip Characteristics of Centrifugal Compressor Impellers (원심압축기 임펠러의 Blockage와 Slip 특성에 관한 수치연구)

  • Oh, Jongsik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.236-244
    • /
    • 2000
  • As the second part of the author's study, the aerodynamic blockage and the slip factor of 8 centrifugal compressor impellers are investigated, when the flow rate is changed from numerical stall to choke, using three-dimensional Navier-Stokes analysis results. Based on all the exit blockage distributions, an improved model equation with two adjusting coefficients is developed for the use in design processes with the agile engineering purpose. A popular expression of constant slip factors, the Wiesner's equation, cannot be applied in design processes when more accurate prediction is strongly required at design and off-design points. Slip factor variation is found to be also influenced by the blade loadings at midspan. When the flow rate is changed, a pattern of the slip factor variations is assumed to be a simple form which can be explained using midspan blade loading distributions.

  • PDF

Computations on Passive Control of Normal Shock-Wave/Turbulent Boundary-Layer Interactions (수직충격파와 난류경계층의 간섭유동의 피동제어에 관한 수치 해석)

  • 구병수;김희동
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.25-32
    • /
    • 2001
  • A passive control method of the interaction between a weak normal shock-wave and a turbulent boundary-layer was simulated using two-dimensional Navier-Stokes computations. The inflow Mach number just upstream of the normal shock wave was 1.33. A porous plate wall having a cavity underneath was used to control the shock-wave/turbulent boundary-layer interaction. The flows through the porous holes and inside the cavity were investigated to get a better understanding of the flow physics involved in this kind of passive control method. The present computations were validated by some recent wind tunnel tests. The results showed that downstream of the rear leg of the $\lambda$-shock wave the main stream inflows into the cavity, but upstream of the rear leg of the $\lambda$-shock wave the flow proceeds from the cavity toward to the main stream. The flow through the porous holes did not choke fur the present shock/boundary layer interaction.

  • PDF

A Computational Study on the Performance Prediction of the Two-Stage Axial Compressor (2단 축류압축기 성능예측에 대한 수치해석적 연구)

  • Choi, Chang-Ho;Kim, Jin-Han;Yang, Soo-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.77-83
    • /
    • 2002
  • A computational study on the performance prediction of a two-stage axial compressor has been performed. A quasi-steady mixing-plane method is used on the rotor/stator interface to simulate the unsteady interaction phenomena. Detail flow mechanisms, for example, choke, stall, shock/boundary interaction, etc., have been observed and discussed in conjunction with performance characteristics. Calculational data agree reasonably well with the experimental data in terms of the performance characteristics showing the applicability of computational methods to the design validation of multistage axial compressors instead of experimental methods. But it is found that the stall margin of the original compressor was rather small, thus the design modification adopting a simple 1D/2D method has been conducted and its corresponding computations are also carried out. As a result of the redesign process, the stall margin becomes wide enough, but the overall performance is unsatisfactory, therefore, it seems that the redesign of the blades using 3-D methods is needed in the future work.

Development of a Performance Prediction Method for Centrifugal Compressor Channel Diffusers

  • Kang, Jeong-Seek;Cho, Sung-Kook;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1144-1153
    • /
    • 2002
  • A hybrid performance prediction method is proposed in the present study. A channel diffuser is divided into four subregions: vaneless space, semi-vaneless space, channel, and channel exit region. One-dimensional compressible core flow and boundary layer calculation of each region with an incidence loss model and empirical correlation of residuary pressure recovery coefficient of a channel predict the performance of diffusers. Three channel diffusers are designed and tested for validating the developed prediction method. The pressure distributions from an impeller exit to the channel diffuser exit are measured and discussed for various operating conditions from choke to nearly surge conditions. The strong non-uniform pressure distribution which is caused by impeller-diffuser interaction is obtained over the vaneless and semi-vaneless spaces. The predicted performance shows good agreement with the measured performance of diffusers at a design condition as well as at off-design conditions.