• Title/Summary/Keyword: Flow Assurance

Search Result 66, Processing Time 0.042 seconds

Application of General QA Tools to Quality Improvement Activities in a Hospital's Emergency Room (응급실에서의 질 향상 기법 적용)

  • Hwang, Jee In;Hwang, Jeong Hae;Kim, Chang Yup;Shin, Hee Young;Oh, Byung Hee
    • Quality Improvement in Health Care
    • /
    • v.6 no.1_2
    • /
    • pp.136-149
    • /
    • 1999
  • Background : Although a number of studies are related to QA improvement, there are few studies applied various method of QA tools. This study reviewed the availability of general quality assurance(QA) tools according to ten steps in performing quality improvement activities at emergency room of a tertiary teaching hospital which has more than 1,000 beds. Methods : All patients in emergency room from 15th Oct. 1997 to 5th Sep. 1998 were surveyed. The survey data based on the patient's records of emergency room were evaluated according to length of stay, and we tried to identify problems with management of emergency room. To solve the problems, our team applied general QA tools(brainstorming, flow chart, nominal group technique, benchmarking, cause-and-effect diagram, run chart, control chart) to quality improvement activities and discussed the availability of the tools. Results : After the activities such as changes of staffing, the establishment of local area network and chest pain clinic, application of triage and so on, the percentage of patient who had stayed more than six hours was reduced from 56.0% to 46.8%. The mean number of patients per day in emergency room was increased from 49 to 62. But the reporting time for laboratory test was not changed after these activities. Conclusion : Each QA tool has unique benefit and limitation, but we can implement and evaluate the quality improvement activities more scientifically and systematically by applying these tools to practice according to QA ten steps.

  • PDF

An Experimental Study on Investigation of the Main Factors to Improve the Formation Performance of Gas Hydrate (가스하이드레이트 생성성능 향상을 위한 주요인자별 특성 규명에 관한 실험적 연구)

  • Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.3
    • /
    • pp.15-21
    • /
    • 2009
  • Gas hydrate is an ice-like crystalline compound that forms at low temperature and high pressure conditions. It consists of gas molecules surrounded by cages of water molecules. Although hydrate formation was initially found to pose serious flow-assurance problems in the gas pipelines or facilities, gas hydrates have much potential for application in a wide variety of areas, such as natural gas storage and transportation. Its very high gas-to-solid ratio and remarkably stable characteristics makes it an attractive candidate for such use. However, it needs to be researched further since it has a slow and complex formation process and a high production cost. In this study, formation experiments have been carried out to investigate the effects of pressure, temperature, water-to-storage volume ratio, SDS concentration, heat transfer and stirring. The results are presented to clarify the relationship between the formation process and each factor, which consequently will help find the most efficient production method.

  • PDF

The Trends and Outlook of Technology Development for Oil and Gas in the Arctic (북극 석유·천연가스 자원 기술개발 현황 및 전망)

  • Lim, Jong-Se;Shin, Hyo-Jin;Kim, Ji-Su;Jin, Young-Keun
    • Ocean and Polar Research
    • /
    • v.36 no.3
    • /
    • pp.303-318
    • /
    • 2014
  • The rising global demand for energy resources may lead to greater interest in the Arctic region. Since it has various resources, such as oil and gas, and large potential as a strategic location in exploration and production (E&P), there is likely to occur island sovereignty issues between the five arctic costal states and other countries. While global warming has led to the opening of the Northeast Passage and the Northwest Passage, several obstacles may impede the development of this area such as the low temperature environment, infrastructure problems in a limited area, flow assurance, environmental regulations, etc. To overcome these problems, various techniques have been applied in the exploration, development, production, transportation, and environment fields and it seems to be made technical development in extreme environment. In this study, the E&P status of representative states and development technologies in the Arctic region have been summarized with regard to carrying out E&P related to drilling, development, production, and operation in oil and gas fields. Furthermore, environmental factors have been taken into account to enhance progress with regard to E&P and ensure sustainable development in the Arctic. On that basis, it will be possible to secure oil and gas field development, production technology and R&D infrastructure in the Arctic.

A Study on the Development of Oxygen Cluster Ion Generator for Sterilization of Bio Clean Room(BCR) (Bio Clean Room(BCR)의 멸균을 위한 산소 클러스터이온 발생 장치 개발에 관한 연구)

  • Park, Dong-Il;Chung, Kwang-Seop;Kim, Young-Il;Kim, Sung-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.1
    • /
    • pp.7-13
    • /
    • 2013
  • Bio Clean Room(BCR) and pharmaceutical product manufacturing facilities require careful assessment of many factors, including HVAC, controls, room finishes, process equipment, room operations, and utilities. Flow of equipment, personnel, and product must also be considered along with system flexibility, redundancy, and maintenance shutdown strategies. It is important to involve designers, operators, commissioning staff, quality control, maintenance, constructors, validation personnel, and the production representative during the conceptual stage of design. Critical variables for room environment and types of controls vary greatly with the clean space's intended purpose. It is particularly important to determine critical parameters with quality assurance to set limits and safety factors for temperature, humidity, room pressure, and other control requirements. In this paper, oxygen cluster ion equipment was utilized in order to enhance the indoor air quality and to prevent the airborne infection of ward in hospital. Moreover, the performance test of the equipment was also performed in order to develop the optimal sterilization system of BCR using the equipment.

Modern Paper Quality Control

  • Komppa, Olavi
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.5
    • /
    • pp.72-79
    • /
    • 2000
  • On the other hand, the fiber orientation at the surface and middle layer of the sheet controls the bending stiffness of paperboard. Therefore, a reliable measurement of paper surface fiber orientation gives us a magnificent tool to investigate and predict paper curling and cockling tendency, and provides the necessary information to fine-tune the manufacturing process for optimum quality. Many papers, especially heavily calendered and coated grades, do resist liquid and gas penetration very much, being beyond the measurement range of the traditional instruments or resulting inconveniently long measuring time per sample. The increased surface hardness and use of filler minerals and mechanical pulp make a reliable, non-leaking sample contact to the measurement head a challenge of its own. Paper surface coating causes, as expected, a layer which has completely different permeability characteristics compared to the other layers of the sheet. The latest developments in sensor technologies have made it possible to reliably measure gas flow n well controlled conditions, allowing us to investigate the gas penetration of open structures, such as cigarette paper, tissue or sack paper, and in the low permeability range analyze even fully greaseproof papers, silicon papers, heavily coated papers and boards or even detect defects in barrier coatings! Even nitrogen or helium may be used as the gas, giving us completely new possibilities to rank the products or to find correlation to critical process or converting parameters. All the modern paper machines include many on-line measuring instruments which are used to give the necessary information for automatic process control systems. Hence, the reliability of this information obtained from different sensors is vital for good optimizing and process stability. If any of these on-line sensors do not operate perfectly as planned (having even small measurement error or malfunction), the process control will set the machine to operate away from the optimum, resulting loss of profit or eventual problems in quality or runnability. To assure optimum operation of the paper machines, a novel quality assurance policy for the on-line measurements has been developed, including control procedures utilizing traceable, accredited standards for the best reliability and performance.

  • PDF

Characteristics of the 80MPa High Strength Concrete according to the Hot Weather Outside Temperature conditions (서중 외기온도 조건에 따른 80 MPa 고강도콘크리트의 특성)

  • Jung, Yong-Wook;Lee, Seung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.688-696
    • /
    • 2016
  • This paper evaluates the effect of hot weather conditions on the fresh concrete characteristics of 80-MPa high-strength concrete. The slump flow, packing ability, setting time, hydration heat, and compressive strength were evaluated under exterior temperatures of $20^{\circ}C$, $30^{\circ}C$, and $40^{\circ}C$. The slump flow, arrival speed of 500 mm, and their changes with the elapsed time were found to bring the occurrence of rapid slump loss forward by about 30 minutes when increasing the temperature by $10^{\circ}C$ from $20^{\circ}C$. The initial and final setting times of the concrete at $20^{\circ}C$ were 7 hours and 12 hours, which were reduced by 1 hour and 3 hours at $30^{\circ}C$ and by 2 hours and 5 hours at $40^{\circ}C$, respectively. The hydration heat characteristics at $20^{\circ}C$ and $30^{\circ}C$ were similar in terms of the highest temperature of the concrete casting depth and the time when the maximum temperature occurred. However, at $40^{\circ}C$, the maximum temperature occurred about 4 hours earlier, and the highest temperature per the concrete casting depth increased by about $12^{\circ}C$. Therefore, it is concluded that the characteristics can vary according to the exterior temperature. Thus, quality assurance should consider workability, temperature cracks due to hydration heat, the properties of strength development, and other characteristics.

Modern Paper Quality Control

  • Olavi Komppa
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.06a
    • /
    • pp.16-23
    • /
    • 2000
  • The increasing functional needs of top-quality printing papers and packaging paperboards, and especially the rapid developments in electronic printing processes and various computer printers during past few years, set new targets and requirements for modern paper quality. Most of these paper grades of today have relatively high filler content, are moderately or heavily calendered , and have many coating layers for the best appearance and performance. In practice, this means that many of the traditional quality assurance methods, mostly designed to measure papers made of pure. native pulp only, can not reliably (or at all) be used to analyze or rank the quality of modern papers. Hence, introduction of new measurement techniques is necessary to assure and further develop the paper quality today and in the future. Paper formation , i.e. small scale (millimeter scale) variation of basis weight, is the most important quality parameter of paper-making due to its influence on practically all the other quality properties of paper. The ideal paper would be completely uniform so that the basis weight of each small point (area) measured would be the same. In practice, of course, this is not possible because there always exists relatively large local variations in paper. However, these small scale basis weight variations are the major reason for many other quality problems, including calender blacking uneven coating result, uneven printing result, etc. The traditionally used visual inspection or optical measurement of the paper does not give us a reliable understanding of the material variations in the paper because in modern paper making process the optical behavior of paper is strongly affected by using e.g. fillers, dye or coating colors. Futhermore, the opacity (optical density) of the paper is changed at different process stages like wet pressing and calendering. The greatest advantage of using beta transmission method to measure paper formation is that it can be very reliably calibrated to measure true basis weight variation of all kinds of paper and board, independently on sample basis weight or paper grade. This gives us the possibility to measure, compare and judge papers made of different raw materials, different color, or even to measure heavily calendered, coated or printed papers. Scientific research of paper physics has shown that the orientation of the top layer (paper surface) fibers of the sheet paly the key role in paper curling and cockling , causing the typical practical problems (paper jam) with modern fax and copy machines, electronic printing , etc. On the other hand, the fiber orientation at the surface and middle layer of the sheet controls the bending stiffness of paperboard . Therefore, a reliable measurement of paper surface fiber orientation gives us a magnificent tool to investigate and predict paper curling and coclking tendency, and provides the necessary information to finetune, the manufacturing process for optimum quality. many papers, especially heavily calendered and coated grades, do resist liquid and gas penetration very much, bing beyond the measurement range of the traditional instruments or resulting invonveniently long measuring time per sample . The increased surface hardness and use of filler minerals and mechanical pulp make a reliable, nonleaking sample contact to the measurement head a challenge of its own. Paper surface coating causes, as expected, a layer which has completely different permeability characteristics compared to the other layer of the sheet. The latest developments in sensor technologies have made it possible to reliably measure gas flow in well controlled conditions, allowing us to investigate the gas penetration of open structures, such as cigarette paper, tissue or sack paper, and in the low permeability range analyze even fully greaseproof papers, silicon papers, heavily coated papers and boards or even detect defects in barrier coatings ! Even nitrogen or helium may be used as the gas, giving us completely new possibilities to rank the products or to find correlation to critical process or converting parameters. All the modern paper machines include many on-line measuring instruments which are used to give the necessary information for automatic process control systems. hence, the reliability of this information obtained from different sensors is vital for good optimizing and process stability. If any of these on-line sensors do not operate perfectly ass planned (having even small measurement error or malfunction ), the process control will set the machine to operate away from the optimum , resulting loss of profit or eventual problems in quality or runnability. To assure optimum operation of the paper machines, a novel quality assurance policy for the on-line measurements has been developed, including control procedures utilizing traceable, accredited standards for the best reliability and performance.

Onshore and Offshore Gas Hydrate Production Tests (육상 및 해상 가스하이드레이트 생산시험에 대한 고찰)

  • Lee, Sung-Rock;Kim, Se-Joon
    • Economic and Environmental Geology
    • /
    • v.47 no.3
    • /
    • pp.275-289
    • /
    • 2014
  • Recent scaled-up onshore and offshore field production tests revealed that the expectancy to produce gas from the gas hydrate deposits is gradually increasing, recognizing its potentials as one of the future energy resources. The total produced gas was approximately $480m^3$ by the hot water circulation method for 6 days' operation in Mallik 2002 project in Canada. In Mallik 2006-2008 project, the gas was successfully produced stably by the depressurization method for 6 days, up to $13,000m^3$ cumulatively. The depressurization method applied in the Mallik test was revealed as an effective way to produce gas from gas hydrates. The Alaska North Slope field trial in 2012 to inject mixed gas of $CO_2$ and $N_2$ to exchange $CH_4$ was successfully completed for the first time to produce maximum $1,270m^3$ per day. The remarkable achievement is that Japan has completed first offshore production test in the Eastern Nankai Trough, and produced approximately $120,000m^3$ of methane by the depressurization method for 6 days in March 2013. The technical challenges and uncertainties obtained from Nankai Trough production test give Korea more considerations in the aspects of well completion, reservoir formation and seafloor stability, sand control, flow assurance, and etc., due to the different geological environments and geomechnical properties in Ulleung Basin in Korea.

A Study on the Formation of Hydrate Plugging due to water molecules in High Pressure and Low Temperature Gas Pipeline (고압$\cdot$저온 가스 배관에서 수분에 의한 하이드레이트 플러깅 형성)

  • Lee J. H.;Baek Y. S.;Sung W. M.
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.1 s.17
    • /
    • pp.38-45
    • /
    • 2002
  • Hydrates are solid cryctallines resembling ice in appearance, which are consist of a gas molecule surrounded by a cage of water molecules. Because of containning a large amount of methane, hydrates have been considered as a future energy resource. However, the formation of hydrates in the oil and gas industries has been known as a serious problem for a long time. The formation of hydrate in pipeline is common in seasonally cold or sub-sea environments with low temperatures and high pressures. Especially, hydrate plug formation becomes a real menace to flow assurance in inadequately protected transmission lines. This study was carried out for the purpose of understanding mechanism of hydrate plugging and examining formation conditions of hydrate in high pressure gas pipeline. In this study, we measured hydrate equilibrium conditions under the various flowing conditions with the methane. The results were presented both the plugging tendency and the effect of flowing velocity.

  • PDF

Analysis of S/W Test Coverage Automated Tool & Standard in Railway System (철도시스템 소프트웨어 테스트 커버리지 자동화 도구 및 기준 분석)

  • Jo, Hyun-Jeong;Hwang, Jong-Gyu;Shin, Seung-Kwon;Oh, Suk-Mun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4460-4467
    • /
    • 2010
  • Recent advances in computer technology have brought more dependence on software to railway systems and changed to computer systems. Hence, the reliability and safety assurance of the vital software running on the embedded railway system is going to tend toward very critical task. Accordingly, various software test and validation activities are highly recommended in the international standards related railway software. In this paper, we presented an automated analysis tool and standard for software testing coverage in railway system, and presented its result of implementation. We developed the control flow analysis tool estimating test coverage as an important quantitative item for software safety verification in railway software. Also, we proposed judgement standards due to railway S/W Safety Integrity Level(SWSIL) based on analysis of standards in any other field for utilizing developed tool widely at real railway industrial sites. This tool has more advantage of effective measuring various test coverages than other countries, so we can expect railway S/W development and testing technology of real railway industrial sites in Korea.