• Title/Summary/Keyword: Flounder brain

Search Result 46, Processing Time 0.03 seconds

Study on Biochemical Pollutant Markers for Diagnosis of Marine Pollution II. Changes in Oxygen Radicals and Their Scavenger Enzymes of the Flounder(Paralichthys olivaceus) in the Yellow Sea (해양오염의 진단을 위한 생화학적 오염지표에 관한 연구 II. 황해산 넙치(Paralichthys olivaceus)의 산소라디칼 및 제거효소의 변화)

  • Moon, Young-Sil;Kim, Dong-Woo;Choi, Jin-Ho;Park, Chung-Kil;Yang, Dong-Beom
    • Journal of Life Science
    • /
    • v.7 no.1
    • /
    • pp.10-16
    • /
    • 1997
  • This study was designed as a part of efforts to investigate the biochemical pollutant markers for diagnosis of marine pollutions by changes in oxygen radicals and their scavenger enzymes of the flounder (Paralichthys olivaceus)in Yellow Sea of Kores. Protein contents in brian and muscle of cultured flounder in Yellow Sea were remarkably lower(30-45% and 25-45%, respectively) than those of wild flounders in Pohang(control) of East Sea. Lipid peroxide(LPO) levels in serum of cultured and wild flounders in Yellow Sea were significanltly higher (30-80% and 125-145%, respectively)than those of wild flounder in Pohang. Hydroxide radical formations and superoxide dismutase(SOD) activities in serum of cultured flounders in Yellow Sea were significantly 15-30% and 15-35% lower than those of wild flounders in Pohang, but glutathione peroxidase (GSHPx) activities in brain of cultured flounders in Yellow Sea were significantly 15-25% higher than those of wild flounders in Pohang. It is believed that significantly decreases of protein contents in brain anad muscle, remakable increases of malondialdehyde(LPO) in serum and glutathione peroxidase (GSHPx)in brain of cultured flounders of Yellow Sea may be used as a biochemical pollutant markers for diagnosis of marine pollutions.

  • PDF

Study on Biochemical Pollutant Markers for Diagnosis of Marine Pollution VI. Changes in Cholinesterase Activity of Flounder (Pleuronichthys cornutus) in the Yellow Sea (해양오염의 진단을 위한 생화학적 오염지표에 관한 연구 VI. 황해산 도다리 (Pleuronichthys cornutus)의 콜린에스테라아제 활성의 변화)

  • CHOI Jin-Ho;KIM Dong-Woo;PARK Chung-Kil;YANG Dong Beom
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.4
    • /
    • pp.614-619
    • /
    • 1997
  • This study was designed to investigate the biochemical pollutant markers for diagnosis of marine pollutions by changes in cholinesterase activity of the flounder (Pleuronichthys cornutus) in the Yellow Sea of Korea. Acetylchotinesterase (AChE) activities in brain and muscle of wild flounders in the Yellow Sea were significantly lower $(20\~30\%\;and\;10\~40\%,\;respectively)$ than those of wild flounder in Pohang (control) of the last Sea. Butyrylcholinesterase (BChE) activities in brain and muscle of wild flounders in the Yellow Sea were significantly lower $(10\~30\%\;and\;35\~45\%,\;respectively)$ than those of wild flounder in Pohang of the East Sea. lactate dehydrogenase (LDH) activities in serum of wild flounders in the yellow Sea were significantly $(about\;30\%)$ lower than those of wild flounder in Pohang of the East Sea. These results suggest that AChE and BChE activities in brain and muscle of wild flounders of the Yellow Sea may be used as the most effective mean in a biochemical marker for diagnosis of pollutant effects by organophosphorus pesticides.

  • PDF

Molecular analysis on the ODC antizyme from flounder (Parlichthys olivaceus)

  • Seo, Yong-Bae;Lee, Jae-Hyung;Kim, Young-Tae
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.733-735
    • /
    • 2003
  • Ornithine decarboxylase (ODC) is a key enzyme on the regulation of cellular polyamines. ODC antizyme is a protein that represses ODC through accelerating enzymatic degradation by the 26S proteasome. We have isolated two distinct antizyme cDNA clones (AZS and AZL) from a brain cDNA library constructed with flounder (Paralichthys olivaceus). AZS and AZL cDNA clones were encoding 221 and 218 residues long respectively and revealed 57.7% amino acids sequence identity. The presence of two antizymes mRNA were detected in brain, kidney, liver, and embryo.

  • PDF

Effects of Storage Temperature on the Post-Mortem Changes of Wild and Cultured Olive Flounder Muscle

  • Cho Young Je;Kim Tae Jin;Yoon Ho Dong
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.2
    • /
    • pp.161-166
    • /
    • 1999
  • The rigor-mortis progress of cultured olive flounder spiked at the brain started much faster than that of wild one. They attained full rigor state after 30 hrs at $0^{\circ}C$, 36 hrs at $5^{\circ}C$ and 50 hrs at $10^{\circ}C$ in the cultured flounder, while after 36 hrs at $0^{\circ}C$, 50 hrs at $5^{\circ}C$, and 60 hrs at $10^{\circ}C$ in the wild. ATP concentration in the muscle was around $5.9\mu mol/g$ for wild and $6.2\mu mol/g$ for cultured flounder. ATP breakdown progressed rapidly in $0^{\circ}C$ samples, followed by $5^{\circ}C$ and $10^{\circ}C$ samples. $Mg^{2+}$-ATPase activity of myofibrillar protein in the presence of 0.25mM CaCb was higher in cultured myofibri1lar protein than in wild one. $Mg^{2+}$-ATPase activities of myofibrillar protein increased during storage in samples stored at $0^{\circ}C$ and $5^{\circ}C$ while decreased in samples stored at $10^{\circ}C$. The level of breaking strength of muscle immediately after death was higher in the wild muscle than in the cultured muscle. The breaking strength reached maximum level at 10 hrs after death in both samples.

  • PDF

Kudoa ogawai (Myxosporea: Kudoidae) Infection in Cultured Olive Flounder Paralichthys olivaceus

  • Shin, Sang Phil;Jin, Chang Nam;Sohn, Han Chang;Lee, Jehee
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.4
    • /
    • pp.439-444
    • /
    • 2019
  • Since Kudoa septempuntata was identified as a causative agent of food poisoning associated with raw olive flounder Paralichthys olivaceus, interest and concern regarding the parasite have increased. However, there have been no investigations or reports of other Kudoa species infecting the fish (except for K. paralichthys, which infects the brain) in Korea. We found cysts filled with myxospores of Kudoa species in muscles of cultured olive flounder specimens and identified these to the species level. Mature spores were quadrate, measuring $8.7{\pm}0.5{\mu}m$ in length, $9.2{\pm}0.4{\mu}m$ in thickness, and $12.9{\pm}0.6{\mu}m$ in width. The spores containing 4 polar capsules had a length of $2.1{\pm}0.2{\mu}m$ and a width of $1.8{\pm}0.3{\mu}m$. The partial 18S and 28S rDNA of isolates showed 99-100% similarities with K. ogawai. Using these morphological and molecular analyses, the species was identified as K. ogawai. This study is the first report of K. ogawai infection in cultured olive flounder in Korea.

Quantitative analysis of a myxosporean parasite, Parvicapsula sp. detected from emaciated olive flounder, Paralichthys olivaceus in Korea (국내 여윔 넙치에서 검출된 점액포자충 Parvicapsula sp.의 정량적 분석)

  • Kim, Seung Min;Jeong, Joon Bum
    • Journal of fish pathology
    • /
    • v.31 no.2
    • /
    • pp.101-107
    • /
    • 2018
  • Quantitative analysis of a myxosporean parasite, Parvicapsula sp. in internal organs (kidney, intestine, spleen, brain and liver) from non-emaciated (farm-A) or emaciated (farm-B and farm-C) olive flounder Paralichthys olivaceus were performed by real-time PCR. The highest DNA copy number ($1.7{\times}10^7copies/mg$ tissue) was detected in kidney of the emaciated olive flounder from farm-C, while the DNA copy number was below detection limit in all the organs of the olive flounder from farm-B. There was not positive result in all of organs from olive flounder in farm-A. PCR and histopathological analysis were also performed using the same specimen and showed same results as those by real-time PCR.

Possible Involvement of Photoperiodic Regulation in Reproductive Endocrine System of Female Olive Flounder Paralichthys olivaceus

  • Kim, Hyun Chul;Lee, Chi Hoon;Hur, Sung Pyu;Kim, Byeong Hoon;Park, Jun Young;Lee, Young Don
    • Development and Reproduction
    • /
    • v.19 no.1
    • /
    • pp.11-17
    • /
    • 2015
  • This study investigated possible involvement of photoperiodic regulation in reproductive endocrine system of female olive flounder. To investigate the influence on brain-pituitary axis in endocrine system by regulating photoperiod, compared expression level of Kisspeptin and sbGnRH mRNA in brain and FSH-${\beta}$, LH-${\beta}$ and GH mRNA in pituitary before and after spawning. Photoperiod was treated natural photoperiod and long photoperiod (15L:9D) conditions from Aug. 2013 to Jun. 2014. Continuous long photoperiod treatment from Aug. (post-spawning phase) was inhibited gonadal development of female olive flounder. In natural photoperiod group, the Kiss2 expression level a significant declined in Mar. (spawning period). And also, FSH-${\beta}$, LH-${\beta}$ and GH mRNA expression levels were increasing at this period. However, in long photoperiod group, hypothalamic Kiss2, FSH-${\beta}$, LH-${\beta}$ and GH mRNA expression levels did not show any significant fluctuation. These results suggest that expression of hypothalamic Kiss2, GtH and GH in the pituitary would change in response to photoperiod and their possible involvement of photoperiodic regulation in reproductive endocrine system of the BPG axis.

Experimental infection of Philasterides dicentrarchi in Juvenile Olive Flounder, Paralichthys olivaceus (양식넙치에서 분리된 스쿠티카 섬모충 Philasterides dicentrarchi의 넙치 치어 인위감염)

  • Jin Chang-Nam;Kang Hyun-Sil;Lee Chang-Hoon;Lee Young-Don;Lee Je-Hee;Song Choon-Bok;Heo Moon-Soo
    • Journal of Aquaculture
    • /
    • v.19 no.3
    • /
    • pp.197-204
    • /
    • 2006
  • The pathogenicity and infection route of the Scuticociliate, Philasterdies dicentrarchi, were investigated with the 3 and 5 cm-group of juvenile flounders, Paralichthys olivaceus. The infection rates of 3 cm-group were 40% four days post infection (D.P.I.) and increased to be 90.1% 24 D.P.I., whereas those of 5 cm-group were 20% 8 D.P.I., 42% 16 D.P.I., and 81% 24 D.P.I. The results showed there were several infection routes to internal organs Olive flounder. The first route was started with the infection at the soft part of caudal fin and later reached at fin ray and muscle tissue; the second one was started from lips and mouth tissue of upper jaw and later the pathogen could be observed at either muscle tissue or eyeball and brain; the third one was begun at caudal fin and later the pathogen reached at brain tissu'e through spiral cord; the fourth one was started with the infections at abdominal cavity and anus. P. dicentrarchi infected to brain tissue was first observed 14 D.P.I in 3 cm-group and 20 D.P.I. in 5 cm-group of the juvenile flounder. This indicated that the brain infection of P. dicentrarchi might occur faster in small-sized flounder than large-sized one.

Molecular cloning, tissue distribution and quantitative analysis of two proopiomelanocortin mRNAs in Japanese flounder (Paralichthys olivaceus)

  • Kim, Kyoung-Sun;Kim, Hyun-Woo;Chen, Thomas T.;Kim, Young-Tae
    • BMB Reports
    • /
    • v.42 no.4
    • /
    • pp.206-211
    • /
    • 2009
  • Proopiomelanocortin (POMC) plays an essential role in the stress response of the hypothalamic-pituitary-adrenal axis, and is the precursor of biologically active peptides such as adrenocorticotropin (ACTH), $\alpha$-melanocyte-stimulating hormone ($\alpha$-MSH), $\beta$-melanocyte-stimulation hormone ($\beta$-MSH) and $\beta$-endorphin. We have synthesized two different forms of POMC cDNA clones, POMC-I and POMC-II, from a pituitary cDNA library for Paralichthys olivaceus, or Japanese flounder. jfPOMC-I cDNA consists of 954bp and encodes a polypeptide of 216 amino acid residues, whereas jfPOMC-II consists of 971bp which encode a polypeptide of 194 amino acid residues. The high levels of jfPOMC-I and -II mRNAs detected in the pituitary tissue and moderate levels detected in the brain tissue plus our quantitative RT-PCR analysis, which showed there to be no significant difference between the levels of jfPOMC-I and -II mRNAs, indicate that there may be no functional separation between these two mRNAs in the flounder.

Study on Biochemical Pollutant Markers for Diagnosis of Marine Pollution IX. Changes in Cholinesterase Activity of the Flounder (Paralichthys olivaceus) in the South Sea (해양오염의 진단을 위한 생화학적 오염지표에 관한 연구 IX. 남해산 넙치 (Paralichthys olivaceus)의 콜린에스테라아제의 변화)

  • CHOI Jin-Ho;KIM Dong-Woo;PARK Soo-Hyun;PARK Chung-Kil;YANG Dong Beom;LEE Jong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.1
    • /
    • pp.37-41
    • /
    • 1999
  • This study was designed as a part of efforts to investigate the biochemical pollutant markers for diagnosis of marine pollutions by changes in cholinesterase activity of the flounder (Paralichthys olivaceus) in tie South Sea of Korea. Aceflcholinesterase (AChE) activities in brain and muscle of cultured flounders in the South Sea were significantly lower ($10\~20\%$ and $12\~19\%$, respectively) than those of wild flounder in Pohang of the East Sea as a control. Buthrylcholinesterase (BChE) activites in brain and muscle of cultured flounders in the South Sea were also remarkably lower ($25\~40\%$ and $22\~35\%$, respectively) than those of wild flounder in Pohang. Lactate dehydrogenase (LDH) activites in serum of cultured flounders in South Sea were significantly higher ($10\~55\%$) than those of wild flounder in Pohang. It suggests that AChE, BChE and LDH activities of the flounders clould be used as effective biochemical markers for early warning of environmental damages caused by organophosphorus pesticides.

  • PDF