• Title/Summary/Keyword: Flotation process

Search Result 190, Processing Time 0.023 seconds

A Study on the Recovery of Rare Earth Minerals from Ja-Eun Iron Ore. (자은철광석으로부터 희토류광물 회수에 관한 연구)

  • Jeon, Ho-Seok;Kim, Joon-soo;Moon, Young-bae;Lee, Jae-Jang
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.257-261
    • /
    • 2001
  • The separation of rare earths minerals is very difficult because of their similar chemical properties. The rare earth minerals are used as the mixed rare earth minerals or the misch metal without separation to each element. However, the high purity rare earths are recently produced commercially to each element so they there are used as the materials for high tech. Based on the characterization results for the raw minerals, we have developed a combined process containing gravity seperation, magnetic seperation and flotation. The result obtained from this study is monazite concentration of TREO grade 69.11% and Recovery 56.02%.

  • PDF

Micro-Bubble Generating Properties on Gas/Liquid Flow Rate Ratio with the Sludge Flotation/Thickening Apparatus (슬러지 부상농축장치의 기·액 유량비에 따른 미세기포 발생 특성)

  • Lee, Chang-Han;Park, Jong-Won;Ahn, Kab-Hwan
    • Journal of Environmental Science International
    • /
    • v.23 no.1
    • /
    • pp.97-104
    • /
    • 2014
  • The sludge flotation/thickening apparatus equipped a micro-bubble generating pump was used to investigate micro-bubble generating properties on operational parameters. We evaluated micro-bubble generating properties as results to be operated the apparatus by operational parameters which are pump discharge pressure, air/water ratio(A/W ratio), air flow rate, and water flow rate. Micro-bubble generating efficiencies in pumps without recycling flow and with 50% of recycling flow was found to be very efficient on optimum A/W ratio from 1.06 to 3.62% and optimum A/W ratio from 1.05 to 4.06%, respectively. In condition of 3.6% of A/W ratio, we showed that the apparatus could be generated 36,000 ppm of micro-bubble concentration to be optimum treatment efficiency in sludge thickening process.

Effect of Application of Streamline and Mobility Function on Bubble-Floc Collision Efficiency for Trajectory Analysis of DAF Process (DAF공정의 궤적분석에서 유선과 운동함수의 적용이 기포와 플록의 충돌효율에 미치는 영향)

  • Kim, Seong-Jin;Kwak, Dong-Heui;Lim, Young-Hwan
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.676-684
    • /
    • 2004
  • Many researchers have been carrying on study to figure out the exact collision efficiency between bubble and floc. Collision efficiency can has generally been quantified by using trajectory analysis which uses the hydrodynamic, the electrostatic and van der waals forces. Two types of method are considered to induce the hydrodynamic force in the trajectory analysis. One is to use stream function and the other is to use mobility function. There was some difference between stream and mobility function depending upon modelling factors and conditions in trajectory analysis.

Analysis of Controlling the Size of Microbubble in DAF (DAF에서 기포의 크기제어 및 영향분석)

  • Dockko, Seok;Kwak, Dong-Heui;Kim, Young-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.235-241
    • /
    • 2004
  • The dissolved air flotation (DAF) process has been widely used for removing suspended solids with low density in water. It has been known as measuring the size of microbubbles precisely which move upward rapidly in contact zone is difficult. In this study particle counter monitoring (PCM) method is used to measure the rising microbubble after injection from a nozzle. Size and distribution curve of microbubbles are evaluated at different conditions such as pressure drop at intermediate valve, length of pipeline between saturation tank and nozzle and low pressure. And the efficiency is also checked when it collides with different size floc. The experimental results show the following fact. As the final pressure drop occurred closer to a nozzle, the bubble size became smaller. And small bubble collides with large floc as well as small one because of its physical characteristic. However large bubble collides well with large floc rather than small one since hydrodynamic flow in streamline interferes to collide between two. With performing computational process by mathematical model we have analyzed and verified the size effect between bubble and floc. Collision efficiency is the highest when P/B ratio shows in the range of 0.75 < P/B ratio ($R_{particle/Rbubble}$) < 2.0.

Interface Chemical and Hydrodynamic Aspects of Deinking Process Using Flotation for Waste paper Recycling(II) (부유선별법을 적용한 탈묵공정의 계면화학적 및 수력학적 원리(II) -수력학적 원리를 중심으로-)

  • Sun-Young Park
    • Resources Recycling
    • /
    • v.5 no.4
    • /
    • pp.11-16
    • /
    • 1996
  • In the flotation system for deinking process, the ink partcles musl collidc with the air bubbles for adhesion The probability of bubble-particle collision is largely dependent on the hydrodynamic conditions The main reason for the very small ink particles not to be able to float easily may be tound in the hydrodynamic effects, which make small ink particlcs move following the slreamlines around the bubbles rather than achually collide with bubbles. Also. the low floatabdily of the large and heavy ink particles is due to the gravity force and viscous drag which affect uprising molinn of particles through the liquid. Therefore, it is vely important to control not only the surface chemical conditions but the hydrodynamic conditions in practical floialion system

  • PDF

Utilization of Image Analysis Technique for Characterization of Micro-Bubbles Generated by Polymeric Membrane Module (고분자 중공사막 모듈을 이용한 미세기포 발생과 이미지 분석기법을 이용한 기포 특성 파악)

  • Kim, Jun-Young;Chang, In-Soung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.447-452
    • /
    • 2011
  • In this study, the polymeric membrane module is used as a diffuser and an image analysis technique based on visual information is applied to get bubble characteristics. The bubble size generated passed through polymeric membrane module was smaller from 30 to 64% than that of air stone, and bubble volume over 70% was ranged from 0.2 to 0.82 mm. But over 80% the bubbles from air stone diffuser ranged from 0.77 to 1.08 mm. The air stone and polymeric membrane module used as diffuser for a flotation system. The floc size inside the flotation reactor using air stone diffuser was bigger than that of the polymeric membrane module, which means that the micro-bubbles generated from polymeric membrane module could provide better opportunities for collisions between colloidal particles than those from air stone diffuser. Therefore, there is a possibility to apply the polymeric membrane module as a diffuser to increase the removal efficiency in the flotation process. Also, the image analysis technique used in this study could be applied as a useful analytical tool for acquisition of an information about the bubble characteristic.

Clean Flotation Process to Recycle useful Materials from Fly Ash (비산재로부터 유용성분을 회수하는 청정부유선별공정)

  • Han, Gwang Su;Kim, Dul-Sun;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.177-185
    • /
    • 2020
  • All coal ash, generated from coal-fired power plants, is entirely dumped onto a landfill site. As coal ash contains 80% fly ash, a clean floating process was developed in this study to recover useful components from coal ash and to use them as high value-added industrial materials. When the unburned carbon (UC) was recovered from the fly ash, soybean oil, an eco-friendly vegetable oil, was used as collector instead of a non-ionic kerosene collector to prevent the occurrence of odor from the kerosene. After the UC was separated by flotation, particulate ceramic microsphere (CM) was recovered, without generating acidic wastewater, through hydro-cyclone instead of sulfuric acid solution in order to separate ceramic microsphere (CM) and cleaned ash (CA) from the residue. By utilizing soybean oil as a collector, the recovery rate of UC turned high at 85.8% due to the increased adsorption of UC, the high viscosity of soybean oil, and the increase in floating properties caused by the linoleic acid contained in soybean oil. All of the combustible components contained in the recovered UC were carbon components, with the carbon content registering high when soybean oil was used. The recovered UC had many pores with a rough surface; thus, it could be easily ground and then used as an industrial material for its fine particles. The CM and CA recovered by the clean separation process using hydro-cyclone had a spherical shape, and the particles were clearly separated without clumping together. The average diameter (D50) of the particles was 5 ㎛, so it was possible to realize the atomization of CM through a process change.

Analysis of the operating factors of dissolved air flotation (DAF) process for effluent quality improvement from aquaculture rearing tank (양식장 배출수 수질관리를 위한 용존공기부상 공법의 운전 인자 영향 분석)

  • Ki, Jae-Hong;Kim, Hyoung-Jun;Lee, Ju-Young;Han, Moo-Young;Gang, Hee-Woong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.107-113
    • /
    • 2012
  • Pollutants in aquaculture system effluent mostly originated from solid wastes including uneaten feed and excreta of cultured species. In this research, DAF(Dissolved Air Flotation) unit is suggested as an integrated solid control unit especially as a form of IIBG(Inline Injection Bubble Generation) process in aquaculture system. Solid removal performance of DAF unit was examined under various operation and salinity conditions with turbidity and suspended solid. Solid waste removal efficiencies were found to be affected by operation conditions including saturator pressure, recycle ratio, coagulant concentration. Solid removal efficiency was higher under higher saturator pressure and recycle ratio under which condition larger number of bubbles is generated. Coagulant is thought to have important role in creating bubble-particle aggregate by showing better removal efficiency with higher concentration. However higher saline water showed less effectiveness in removing solids by DAF(IIBG). Application of DAF(IIBG) process also showed additional effect in phosphate removal and DO(Dissolved Oxygen) supply. Phosphate existed in polluted water was removed up to 46% after treatment, which is thought to attribute to aluminium phosphate precipitation. And DO concentration was found to increase over 50% of initial saturation concentration after the injection of micro-bubbles. Through experiments on solid removal from aquaculture effluent, DAF(IIBG) process is estimated to be effective solid control method. This property can help aquaculture system being installed and operated simply and effectively.

Treatment of Oil Contaminated Groundwater Using DAF and Fenton Oxidation Process (DAF와 펜톤 산화 공정을 이용한 유류 오염 지하수 처리)

  • Lee, Chaeyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.10
    • /
    • pp.49-55
    • /
    • 2010
  • The oil spill occurred frequently due to probably the increased consumption of oil as the energy source and the raw materials of various chemicals. For the treatment of oil contaminated groundwater, DAF(Dissolved Air Flotation) is being used but the removal efficiency is low. Therefore it is necessary to reduce the free phase oil, oil-in water type or water-in oil type emulsified oil, and soluble oil which are the main sources of contaminated groundwater. In this study, treatment of contaminated groundwater was performed using the Fenton oxidation process. The optimum conditions for the removal of THP(Total Petroleum Hydrocarbon) were 3 of pH, 25mM of $H_2O_2$ concentration and 25mM of $Fe^{2+}$ concentration. THP and COD(Chemical Oxygen Demand) concentrations decreased less than 1.5mg/L and 40.0mg/L in 7 minutes using DAF and Fenton oxidation process. However it is necessary to install the settling basin as the sludge concentration increased approximately 5 times.