• Title/Summary/Keyword: Floral dimorphism

Search Result 7, Processing Time 0.025 seconds

Heterostyly and pollen dimorphism of Menyanthes trifoliata

  • Hye-Rin KIM;Kweon HEO
    • Korean Journal of Plant Taxonomy
    • /
    • v.53 no.1
    • /
    • pp.9-13
    • /
    • 2023
  • Menyanthes trifoliata L., a heterostyly plant, is an endangered species in Korea. Floral morphology has been published for M. trifoliata, but few works have concentrated on pollen dimorphism differences accompanied by floral dimorphism. Here, we conducted a comparative morphological study of two morphs to investigate a dimorphism system with Korean populations. Pollen morphological characteristics were observed with a light microscope and a scanning electron microscope. For the pin type, pollen size is 36.01 ± 2.01 ㎛, whereas for the thrum type it is 41.28 ± 2.58 ㎛ in terms of the equatorial diameter. The two morphs have a small apocolpium field at 5.62 ± 0.30 for the pin type and 6.24 ± 0.70 for the thrum type. The configuration of the aperture was tricolpate with a striate ridge in the two morphs. However, they have different pollen shapes and sizes, stigma shapes, and apocolpium sizes. M. trifoliata only has different pollen sizes and shapes between European populations and Korean populations. Nevertheless, Korean populations also show pollen dimorphism correlated with their floral dimorphism.

Pattern of Sexual Dimorphism in Garcinia kola (Heckel) Plantation

  • Henry Onyebuchi, Okonkwo;Godwin Ejakhe, Omokhua;Uzoma Darlington, Chima
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.4
    • /
    • pp.275-283
    • /
    • 2022
  • A study was designed to investigate the pattern of sexual dimorphism in a plantation of Garcinia kola. Twenty trees were randomly selected for the study and have been observed to flower regularly. A total of 100 inflorescence were randomly collected from the crown of each tree and 500 flowers randomly assessed within the period of four (4) flowering seasons. Floral sex assessment was done visually and with a hand magnifying lens; floral morphometric measurements (i.e. pedicel and perianth length and breadth), inflorescence length, and breadth) was taken using a veneer caliper; number of flowers per inflorescence and inflorescence per twig was counted; while, data analysis was conducted on excel using analysis of variance and pairwise t-test comparison. Four floral sexes were identified in the G. kola plantation studied which were unisexual male flowers, unisexual female flowers, cosexual unisexual male flowers, and cosexual hermaphrodite flowers. Three tree sexes were identified viz: inconstant male, invariant female, and cosexual trees. The plantation was significantly sexually dimorphic in floral sex and phenotypic traits (i.e. pedicel and perianth size), and as well as sexually dimorphic in tree sex and reproductive phenotypic traits (i.e. inflorescence size, number of inflorescences per twig, and number of flower bud per inflorescence). The sexual system of the plantation was therefore trioecious with features suggestive of evolving dioecy through the gynodioecious pathway.

Gynodioecy and floral dimorphism of Glechoma longituba (Nakai) Kuprian. (Lamiaceae) in Korea

  • Jang, Tae-Soo;Hong, Suk-Pyo
    • Korean Journal of Plant Taxonomy
    • /
    • v.41 no.3
    • /
    • pp.202-208
    • /
    • 2011
  • The present study was focused on the careful investigation of Glechoma longituba flowers collected from four populations in Korea to clarify their precise sexual systems. All floral characters of this taxon were examined by using a stereo microscopy. The nutlet size and production were compared between two distinct morphs (i.e., hermaphrodites and females), and pollen viability test of hermaphrodite and intermediate phenotype (i.e., individuals with a mixture of females and perfect flowers) was also observed by light microscopy (LM). All of the investigated floral characters of G. longituba are significantly different from one sexual morph to another. Hermaphroditic plants were larger than the female ones in corolla width and length, calyx length, filament length, anther length, and style length (all P < 0.0001, respectively). However, the nutlet width of the female plants was larger than those of the hermaphrodites (P = 0.013). Nutlet production of females was higher than hermaphrodites in Na-Ju population [H (Hermaphrodite): ca. 17.76%, F (Female): ca. 37.45%], but in Mun-San population was no significant difference between these sexual morphs (H: ca. 57.52%, F: ca. 53.16%). We have found significant differences between the fertile pollen grain of hermaphrodite and sterile pollen grain of intermediate phenotype based on pollen size and viability. The results of the present study suggest that compensation (flower size dimorphism, seed set, and pollen viability) is one of the main mechanisms in order to maintain female plants in gynodioecious G. longituba.

STUDIES ON THE DIMORPHISM OF THE PERSICARIA SENTICOSA NAKAI (Persicaria senticosa Nakai의 Dimorphism에 관한 연구)

  • HARN, Chang Yawl
    • Journal of Plant Biology
    • /
    • v.3 no.1
    • /
    • pp.16-25
    • /
    • 1960
  • HARN, Chang Yawl (Chonnam U. Kwangju, Korea): Siudies on the dimorpism of the Perisicaria senticosa Nakai-Kor. jour. Bot. 3(1) 16-25 During his researches regarding the morphological and physiological properties of Polygonecenae, the author has found that the species, Persicaria senticosa, aiso, besides the heterostylous plants of Polygonum family, Fagopyrum esculentum, and Persicaria japonica which was recently verified by the author as dimorphic, shows the typical floral structure of heterostylism, the description of which is not found in taxonomical works. Further research on this species have revealed that this plant, despite pressessing characteristic structural dimorphism, does not exhibit even the slight signs of heterostlylous properties physiologically. This is a deviation from the usual behavior of normal heterostylous plants. What is interesting is the fact that the physiological behavior of this species is quite contrary to that of P. japonica which is considered to be the most highly specialized dimorphic plant. Thus it is assurred that if some species of this family had taken a heterostylic form in its course of development from autogamy to allogamy, P. seoticosa would be the least differentiated type of dimorphic forms among the three heterostylous plants, including buckwheat, of this family. The results obtained in this experiment are summarized as follows: 1) P. senticosa has two forms of flower, one, long style-short stamened; the other, short style-long stamened. Not only conspicuous is this primary difference, but the secondary difference, such as pollen grain size, is noticeable between long and short styled individuals, thus expressing structurally the definite trait of a dimorphic plant. 2) Structural alteration of floral parts towards dimorphism has preceeded far less in comparison with those of the P. japonica and F. esculentum. 3) Elaborate studies on fertility reveal that this species does not show the slightest sign of the physiological characteristics of dimorphic plants. In other words, regardless of the modes of combinations, legitimate and illegitimate, fertilization and fruit setting flourish unimpaired. 4) Growth of pollen tubes apparently parallels the results in the fertility, tubes reaching ovary approximately 30 minutes after pollination both in legitimate and illegitimate combinations. Pollen tube penetration appears to be comparatively rapid. 5) A slight difference in the growth of pollen tube seems to exist between legitimate and illegitimate combinations, legitimate union giving slightly faster tube penetration. 6) In the present experiment it was clarified that P. senticosa, known to possess one form of flower in taxonomy, is in reality dimorphic plant having two of flowers. Although this species is definitely heterostylous in floral structure, physiological evidence and pollen tube behavior show that the differentiation of this plant toward the dimorphism has apparently proceeded slightly except for some parts of floral organ. In ordinary heterostylous plants it is a matter of common occurrence that when illegitimately cmbined, there is poor or no fertility, Contrary to the universal property of heterostylous plants, no difference is observed in the fertility and pollen tube growth between the legitimate and illegitimate combinations in the case of P. senticosa. Compared to the P. japonica and F. esculentum, which are supposed to have undergone high degree of dimorphic differentiation, it is an unavoidable conclusion that P. senticosa has not yet developed as a heterostyle plant except for some of its floral parts. If P. japonica is assumed to be the most differentiated type of hetenostylous plant, thenthe P. senticosa would be regarded as the primitive, retaining still the self-fertile nature so common to the Polygonum genus. In nature, however, this plant has a better chance to be pollinated legitimately owing to the two forms of flowers than to be pollinated illegitimately. The author is indebted to Dong Chul, Kim as well as other members of the Department of Plant Breeding and Genetics of Chonnam National University for their efforts out the laborious experiments during the course of the present studies.

  • PDF

STUDIES ON THE DIMORPHISM AND TRANSITION OF BISEXUALITY OF HETEROSTYLOUS POLYGONACEAE (여뀌과 이형경식물의 Dinorphism과 Bisexuality의 변화)

  • Harn, Chang-Yawl
    • Journal of Plant Biology
    • /
    • v.3 no.2
    • /
    • pp.6-18
    • /
    • 1960
  • The present experiments were designed in order to clarify the differences between the long and short styled plants and the transgressive gradition in the degree of dimorphism among the three heterostylous species of the Polygonus, P. japonica, F. esculentum, and P. senticosa, based on investigations regarding the floral structure, ecological and physiological traits, the results of which are summarized as follows: (1) P. japonica, although it exhibits typical dimorphism, has undergone so high a differentiation between long and short styled that its long styled individuals behave as if they were female; and short styled individuals as if male. In long-styled individuals, filament, anther, and pollen grains show signs of degeneration, most of the pollen being abortive. On the other hand, in short styled individuals, the filament, anther, and pollen grains have attained remarkable development; the pollen grians are large and fertile. In short-plant the fertilized flowers readily drop off in every stage of their embryo development. This species has completely lost the self-fertile property, which is characteristic of the non-dimorphic Polygonum genus. Although this specsei typically exhibits the physiological characteristics of the non-dimorphic Polygonum genus. Although this specisei typically exhibits the physiological characteristics of dimorphism in controlled pollination, the short-styled individuals bear no seed in nature, thus misleading taxonomists to idenfity the short-styled plant as male. 2) The morphological feature of the flower organ of P. senticosa obviously indicates definite dimorphism. Physiologically, however, no differentiation towards dimorphism was observed, the species still retaining, both in long and short-individuals, the self-fertile property common to the Polygonum genus. Elaborate examinations revealed that regardless of the modes of pollination, both fertiization and seed setting flourish, no differentiation betwen legitimate and illegitimate unions being recognizable. This sort of physiological property has not been observed in the investigations of other heterostylous plants. It is assumed that this species is differentiated structurally into dimorphism, but not yet physiologically. In nature, however, this plant would have more opportunities to be cross-pollinated, i.e., legitimately combined, than self-pollinated because of the development of two forms of flowers. 3) In terms of heterostylism, the F. esculentum just occupies the intermediate position between P. japonica and P. senticosa structurally, ecologically, and physiologically. Doescription of some of the physiological behavior of the plant will suffice to demonstrate the above facts. While P. japonica has completely lost its self-fertile property, P. senticosa still retains it wolly. In F. esculentum 2-6% of self-fertility is the result in illegitimate combination. There occur occasionally hereditary self fertile individuals among some of the F. or 20 min. irradiation plot, when they reach any stage of the same bacterial population. In addition to this increase of total population in the plots with the more dose of UV light irradiation, it seems that the more dose of UV light irradiation is the more shortened the generation time of Azotobacter. Therefore, it is clear that variation of reproductive rate must be, mere or less, due to the genetic effects induced by UV light irradiation. On the other hand, the lag phase or logarithmic growth phase in nonirradiated culture is shortened prominently, and this must be due to the difference in bacterial number of the original inoculm. The generation time of Azotobacter is shortened by exogeneous treatment of nuclei acid derivatives, and the degree is greater in case of DNA derivatives than RNA dervatives. W.H. Price reported that the rate of ribose nucleic acid to protein in Staphylococcus muscae is proportional to the generation time: that is the faster the cell can form ribose nucleic acid, the more rapid its growth. This explains the shortening of generation time by exogeneous RNA derivatives in this work reasonably. On the other hand, it is well known that the desoxyribose nuclic acid content per cell is constant and independent of the generation time. A.D. Laren and W.N. Takahashi reported that the infectious RNA from TMV is 6 times as sensitive to inactivation by UV as it is in the form of intact virus, and that inactivation of infectious TMV involves onlu a local change on RNA chain. But, the effect of exogeneous DNA in this work suggests that irradiated living cell which cotain DNA bring about some change on DNA moleculs as well as RNA molecules. And if the mutagenic effects of UV take into consideration, it is very reasonable. Therefore, it is clear that the variation of the generation time by UV irradiation is, more or less, due to the genetic effects. Therefore, it seems that the shortness of the average lifewpan of Azotobacter by UV irradiation is resulted not only from the influence of the environmental conditions, but also from the variation of genetic factor of the individual.

  • PDF

STUDIES ON THE DIMORPHISM AND FERTILITY OF PERSICARIA JAPONICA (MEISSNER) GROSS ET NAKAI (Persicaria Japonica (MISSNER) Gross et Nakai의 이형화와 수정력에 관한 연구)

  • HARN, Chang Yawl
    • Journal of Plant Biology
    • /
    • v.3 no.1
    • /
    • pp.1-15
    • /
    • 1960
  • HARN, Chang Yawl : Studies on the dimorphism and Fertility of Persicaria japonica (MEISSNER) Gross et Nakai. Kor Jour. Bot. 3(I) 1-15 1960 Numerous investigations, since the works of DARWIN, have been made regarding the heterostylous plants by JOST (1907), CORRENS (1924), LAIBACK (1924), LEWIS (1943), and many others. Studies on the heterostylous Polygomum, however, were not reported except for the buckwhent, Fagopyrum esculentum, which was investigated by SCHOCH-BODMER (1930), EAST (1934), FROLOVA & Co-Workers (1946), MORRIS (1947, 1951) TATEBE (1949, 1951, 1953), present author (1957), and others. It is because no heterostylous species, besides buckwheat, have been known to exist in the Polygonum family. The author, during his studies on both heterostylism and fertility of Polygonaceae, has found that the species, persicaria japonica (Meissner) Gross et Nakai, is not diecious as has been known in taxonomy, but in reality beterostylous both morphologically and physiologically. It was found that this plant, regarded by taxonomist, as a male plant setting no seed, actually set seed (botanical fruit) when legitimate combination was made. Since his brief report on the dimorphic phenomens of this plant in 1956, the author's further research on the manner of fertilization has revealed that this species is a peculiar type whose dimorphism has undergone extreme specialization structurally and physiologically, the short-styled individual behaving in nature as a male plant and the long-styled individual, as female, whereas in controllled pollination the plant shows highly differentiated typical dimorphism. When compared with the other dimorphous species of this family, F. esculentum and P. sentiosa. it has been clarified that these three species differ in the degree of differentiation of their dimorphism morphologically and physiologically. That is, P. japonica has developed such a high specialization as to mislead the taxonomists, while P. senticosa shows almost no noticeable difference between long- and shortstyled individuals retaining most of the inherent physiological character cmmon to the genus except for the fact that it has two forms of flowers. F. esculentum appears to have taken the intermediate position in every respect. The result obtained in the present experiment are summarized as follows: 1) P. japonica has two kinds of individuals, one long style-short stamened; the other, short style-long stamened. The floral structure of this plants shows typical characteristics of dimorphic heterostylism. The differentiation between the two forms of flower has proceeded so highly both in primary and secondary difference of flower structure that this may be regarded as the most specialized form of dimorphism. 2) The differences of floral structure between the long and short styled individuals are remarkable compared with the other dimorphic species of the family. 3) The stamens of long styled plants show the sign of deteriolation whereas those of the short styled flower are well-developed. 4) When legitimate combinations are made, both L- and S-styled individuals are fertilized well and set seed (fruit), while in the illegitimate combination no fertilization and seed setting occur. Physiologically this species exhibits the typical behavior of dimorphic plants. 5) The self-fertile character, so common in other species of the other non-heterostyle Polygonum family, has disappeared completely. 6) Under natural conditions, no or few seed setting is observed in short styled individuals that behave as if they were male plants. 7) In hand pollination, the combination of both $L{\times}S$ and $S{\times}L$ alike yield relatively good fertility and seed-formation, the behavior of short styled individuals in artificial pollination differing remarkably from that in nature. 8) Under controlled pollination, $L{\times}S$ combination sets far more seed than in the combination of $S{\times}L$. In the S-styled individuals, the fertilized flower has the tendency of its seed more readily falling off in every stage of seed development than in the L-styled individuals. 9) The behaviors of pollen tubes just parallels the results of fertility test. That is, in the illegitimate combination, L-selfed, $L{\times}L$, S-selfed, and $S{\times}S$, the growth of pollen tubes is checked in the style, while in legitimately combined $L{\times}S$ and $S{\times}L$, the pollen tubes grow well reaching the ovaries within 40-50 minutes after pollination. The response of short styled individuals, known as male plant among taxonomists, is identical, as far as behavior fo pollen tube growth and fertilization are concerned, to that of long styled individuals, the so-called female plant. 10) The pollen grains from the short-styled plants are complete and fertile, whereas 70% of those of L-styled are found to be abortive, i.e., empty contents. 11) The remaining 30% of pollen of L-plant shows varied degree of stainability when stained with iron-aceto-carmine......mostly light red, while the pollen grains of S-style individuals are dark brown indicating complete fertility and viability. 12) The abundance of sterile pollen in L-styled and the nature of seed-dropping which occurs in S-styled individuals appear to be the main causes why the short styled individuals bear no seed in nature. Under controlled legitimate union, $S{\times}L$, the careful and elaborate pollination would give the S-styoled flowers the opportunities to receive the fertile pollens, though few in number, from L-styled plant, thus enabling S-plant to bear seed. 13) This species is not dioecious as is regarded by taxonomists, but typical dimorphic plant which has so highly specialized in floral structures and funcitons that the long-styled plant behaves just like a female individual; and the short-styled, like a male.

  • PDF