• Title/Summary/Keyword: Floor Plate

Search Result 247, Processing Time 0.14 seconds

Mixed Convection Transport from a Module on the Bottom Surface of Three Dimensional Channel (3차원 채널 밑면에 탑재된 모듈로부터의 혼합대류열전달)

  • Lee, Jin-Ho;Park, Sang-Hee;Riu, Kap-Jong;Bang, Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.632-639
    • /
    • 2000
  • Conjugate heat transfer from a heat generating module ($31{\times}31{\times}7mm^3$) bonded through the module support on the floor of a parallel-plate channel(20mm high, 400mm wide, and 800mm long) to mixed convective air flow(0.2${\sim}$0.9m/s) is studied experimentally. The input power to the module is changed in a range 1.0${\sim}$4.5W, the floor thickness 0.2${\sim}$5mm, and the thermal resistance of module support, Rc:=0.06, 1.03 and 82.0K/W. Thermal conductance(Uc) of the board and convective thermal conductance($U_A$) from the module were derived, and the effect of V; Rc and t on Uc was investigated. It is found that the conjugate conductance (Uc) and the conductive heat transfer ratio ($Q_B$/Q) depend on the thermal resistance of the module support, the air velocity and the board thickness. The change of the module support resistance and the board thickness helps to elucidate the relative significance of heat transfer paths through the module support, the board, and from the board surface to the air. Additional information is investigated about the dependence of the heat transfer rate on the mixed convection parameter.

Development of MFL Testing System for the Inspection of Storage Tank Floor (저장탱크 바닥면 검사를 위한 누설자속 탐상 시스템 개발)

  • Won, Soon-Ho;Cho, Kyung-Shik;Lee, Jong-O;Chang, Hong-Keun;Joo, Gwang-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.38-44
    • /
    • 2002
  • MFL method is a qualitative inspection tool and is a reliable, fast and economical NDT method. The application of MFL method to the inspection of storage tank floor plates has been shown to be a viable means. Examination of tank floors previously depended primarily upon ultrasonic test methods that required slow and painstaking application. Therefor most ultrasonic inspection of storage tank has been limited to spot testing only. Our NDE group have developed magnetic flux leakage system to overcome limitation of ultrasonic test. The developed system consists of magnetic yoke, array sensor, crawler and software. It is proved that the system is able to detect artificial flaw like 3.2mm diameter, 1.2mm depth in 6mm thick steel plate.

Distribution of Procymidone in a Small Vinyl House after Application of Smoke Generator (소형 비닐하우스 내에서 훈연처리된 살균제 Procymidone의 분포 특성)

  • Lim, He-Kyoung;Kim, Joung-Han;Cho, Kwang-Yun;Yu, Ju-Hyun
    • Applied Biological Chemistry
    • /
    • v.44 no.1
    • /
    • pp.7-11
    • /
    • 2001
  • The distribution of procymidone in a small vinyl house containing cucumber plants or mimic plants was investigated after application of smoke generator. The deposition of procymidone on glass plate and filter paper was significantly similar to that on cucumber leaves, so that glass plate and filter paper could be substituted for cucumber leaves on deposition studies. The deposition of procymidone was proportional to the horizontally projected area of surface; the deposition on the horizontal surface was maximal, and the deposition was minimal for the perpendicular surface. The amount of deposition on the backside of leaf was less than 5% compared to that on the horizontal surface of leaf. The height of leaf from the floor was not a significant factor influencing on the deposition of procymidone whether leaves were overlapped or not. However, the deposition of procymidone on the overlapped leaves was relatively less than that on the unoverlapped leaves. And the deposition difference depending on the distance between leaves was not observable. Overall, the deposition of procymidone was proportionally increased with the application rate of smoke generator, but the deposition was inversely related to the sum of the total horizontal leaf area of mimic plants and the surface area of floor.

  • PDF

Effects of Shore Stiffness and Concrete Cracking on Slab Construction Load I: Theory (슬래브의 시공하중에 대한 동바리 강성 및 슬래브 균열의 영향 I: 이론)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Hong, Geon-Ho;Im, Ju-Hyeuk;Kim, Jae-Yo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.41-50
    • /
    • 2010
  • Long-term floor deflection caused by excessive construction load became a critical issue for the design of concrete slabs, as a flat plate is becoming popular for tall buildings. To estimate the concrete cracking and deflection of an early age slab, the construction load should be accurately evaluated. The magnitude of construction load acting on a slab is affected by various design parameters. Most of existing methods for estimating construction load addressed only the effects of the construction period per story, material properties of early age concrete, and the number of shored floors. In the present study, in addition to these parameter, the effects of shore stiffness and concrete cracking on construction load were numerically studied. Based on the result, a simplified method for estimating construction load was developed. In the proposed method, the calculation of construction load is divided to two steps: 1)Onset of concrete placement at a top slab. 2)Removal of shoring. At each step, the construction load increment is distributed to the floor slabs according to the ratio of slab stiffness to shore stiffness. The proposed method was compared with existing methods. In a companion paper, the proposed method will be verified by the comparison with the measurements of actual construction loads.

An Experimental Study on the Structural Performance of Lateral Resistance in Steel Elevator Pit (강재엘리베이터 피트 측압저항 구조성능에 관한 실험적 연구)

  • Hong, Seong-Uk;Kim, Tae-Soo;Baek, Ki-Youl
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 2019
  • Steel elevator pit was developed for the purpose of minimizing the excavation, simplifying the construction of the frame and economical efficiency by improving the problems that occurred in the existing reinforced concrete. It is common to apply conventional RC method through excavation to underground structures such as underground floor collector well and elevator pit. In recent years, the use of steel collector well and steel elevator pits to reduce construction costs by minimizing the materials of steel and concrete has been continuously increasing. The steel elevator pit is an underground structure and then the performance of the welding part and the structure system is important. Specimen with only steel plate and concrete without studs could support the load more than 3 times than the specimen with deck only. Therefore, even if there is no stud, the deck (steel plate) rib is formed and the effect of restraining the steel plate and the concrete during the bending action can be expected. However, since sudden fracture in the elevator pit may occur, stud bolt arrangement is necessary for the composite effect of steel plate and concrete. It is expected that the bending strength can be expected to increase by about 15% or more depending with and without stud bolts.

Research on Arrangement Design for Sailing Yacht Winch using 3D Human Simulation (3D 휴먼 시뮬레이션을 통한 세일링 요트 윈치 배치 설계 연구)

  • Song, Yeun-Hee;Kim, Dong-Joon;Chang, Seong Rok;Lee, Yujeong;Min, Kyong-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.419-424
    • /
    • 2017
  • Unlike other leisure boats, a sailing yacht is propelled by wind power using sails that are controlled by the crew. Therefore, the ergonomic design of the equipment that the crew has to operate for sailing might be very important. However, it is difficult to find design rules and regulations for the equipment arrangement of a sailing yacht based on ergonomics. In this study, the arrangement design for the height and side plate angle of a winch for a sailing yacht was examined from an ergonomic design point of view. In a simulation, a Korean male in his 20s was selected as a human model for a grinder. The physical load was analyzed when he was operating a winch using a 3D human simulation. The lower back load showed the highest value when using the grinder at $90^{\circ}$ and $180^{\circ}$. Based on the results for the lower back load when using the grinder with various winch heights, it is suggested that the winch height from the cockpit floor to the top of the winch should be more than 40% of the height of the human operator. In addition, according to the results for the lower back load with various horizontal distances from the body, it is suggested that the side plate angle should be less than $16^{\circ}$.

Effective Reconstruction of Extensive Orbital Floor Fractures Using Rapid Prototyping Model (신속 조형 모델을 이용한 안와바닥 골절 정복술)

  • Kim, Hye-Young;Oh, Deuk-Young;Lee, Woo-Sung;Moon, Suk-Ho;Seo, Je-Won;Lee, Jung-Ho;Rhie, Jong-Won;Ahn, Sang-Tae
    • Archives of Plastic Surgery
    • /
    • v.37 no.5
    • /
    • pp.633-638
    • /
    • 2010
  • Purpose: Orbital bone is one of the most complex bones in the human body. When the patient has a fracture of the orbital bone, it is difficult for the surgeon to restore the fractured orbital bone to normal anatomic curvature because the orbital bone has complex curvature. We developed a rapid prototyping model based on a mirror image of the patient's 3D-CT (3 dimensional computed tomography) for accurate reduction of the fractured orbital wall. Methods: A total of 7 cases of large orbital wall fracture recieved absorbable plate prefabrication using rapid prototyping model during surgery and had the manufactured plate inserted in the fracture site. Results: There was no significant postoperative complication. One patient had persistent diplopia, but it was resolved completely after 5 weeks. Enophthalmos was improved in all patients. Conclusion: With long term follow-up, this new method of orbital wall reduction proved to be accurate, efficient and cost-effective, and we recommend this method for difficult large orbital wall fracture operations.

Analysis of Weight Reduction Effect of Void Slab on Long and Short Term Deflections of Flat Plates (플랫 플레이트의 장단기 처짐에 대한 중공 슬래브의 자중저감 효과 분석)

  • Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.343-350
    • /
    • 2017
  • The RC flat plate system has benefits such as a short construction time, an improvement of workability and a floor height reduction. In the case of long span slab, cracking damages and large deflections tend to occur due to the low flexural stiffness of flat plates. Specially, over-loading by self-weight of slab during construction increases short and long-term deflections. These problems may be solved by the use of void slab that has benefits of the reduced self-weight. In this study, to analyze an effect of self-weight reduction of void slab on slab deflections, the parametric study is performed. Including variable conditions such as a concrete strength, a slab construction cycle, the number of shored floors, a compressive reinforcement ratio and a tensile reinforcement ratio, slab construction loads and deflections are calculated by considering the construction stages, concrete cracking, and long-term effects. The short-term deflections during construction and the long-term deflections after construction of both of normal and void slabs are compared and the effects of void slab on the reduction of slab deflections are analyzed.

The Study on Lighting Load of Lower-part in Apartment Houses (공동주택 저층부의 조명부하에 관한 연구)

  • Lee, Dong-Wook;Lee, Jun-Gi;Lee, Gab-Taek;Kim, Yong-Tae;Lee, Kyung-Hee
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.63-68
    • /
    • 2016
  • The study is arranged in the form of plate-shaped in the Apartment Houses with placed at right angles. After examined the daylight environment and the indoor illumination in this form of Apartment Houses, in order to improve the daylight environment of the lower floors, I examined the daylight environment. In order to match the indoor illumination, as a standard illumination 400lx, I examine the necessary lighting energy based on the direction and time for the different parts in the Apartment Houses, As the first floor, the lowest power requirement appeared to the South(457W), and the most power requirement appeared to the East(843W).

Nonlinear 3-D behavior of shear-wall dominant RC building structures

  • Balkaya, Can;Schnobrich, W.C.
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.1-16
    • /
    • 1993
  • The behavior of shear-wall dominant, low-rise, multistory reinforced concrete building structures is investigated. Because there are no beams or columns and the slab and wall thicknesses are approximately equal, available codes give little information relative to design for gravity and lateral loads. Items which effect the analysis of shear-wall dominant building structures, i.e., material nonlinearity including rotating crack capability, 3-D behavior, slab-wall interaction, floor flexibilities, stress concentrations around openings, the location and the amount of main discrete reinforcement are investigated. For this purpose 2 and 5 story building structures are modelled. To see the importance of 3-D modelling, the same structures are modelled by both 2-D and 3-D models. Loads are applied first the vertical then lateral loads which are static equivalent earthquake loads. The 3-D models of the structures are loaded in both in the longitudinal and transverse directions. A nonlinear isoparametric plate element with arbitrarily places edge nodes is adapted in order to consider the amount and location of the main reinforcement. Finally the importance of 3-D effects including the T-C coupling between walls are indicated.