• Title/Summary/Keyword: Floor Impact Sound Test Building

Search Result 23, Processing Time 0.016 seconds

Numerical Analysis of Heavy-weight Impact Noise for Apartment Units Considering Acoustic Mode (음향모드를 고려한 공동주택 중량충격음 소음해석)

  • Mun, Dae-Ho;Park, Hong-Gun;Hwang, Jae-Seung;Hong, Geon-Ho;Im, Ju-Hyeuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.676-684
    • /
    • 2012
  • Numerical analysis was performed to investigate the heavy-weight impact noise of apartment houses. The FEM is practical method for prediction of low-frequency indoor noise. The results of numerical analysis, the shape of the acoustic modes in room-2 are similar to that of acoustic pressure field at the fundamental frequency of acoustic modes. And the acoustic pressure was amplified at the natural frequency of the acoustic modes and structural modes. The numerical analysis result of sound pressure level at 63 Hz and 125 Hz octave-band center frequency are similar to the test results, but at 250 Hz and 500 Hz have some errors. Considering most of bang-machine force spectrum exists below 100 Hz, the noise at 250 Hz and 500 Hz are not important for heavy-weight impact noise. Thus, the FEM numerical analysis method for heavy-weight impact noise can apply to estimate heavy-weight impact noise for various building systems.

An Evaluation on the Properties of the Hardened Lightweight Cement Using the Polyethylene Tube (폴리에틸렌 튜브를 혼입한 경량 시멘트 경화체의 기초물성 평가)

  • Kim, Sae-Young;Jeon, Bong-Min;Kim, Hyo-Youl;Oh, Sang-Gyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.57-60
    • /
    • 2006
  • This study proposes the physical properties of the hardened lightweight cement using the polyethylene tube and to make the fundamental data regarding a new lightweight concrete development. The aerated concrete is displaying various effects such as lightweight, insulation characteristic and it is coming to be widely applied the slab layer of apartment as an insulating material but currently the aerated concrete has many problems. Therefore, demonstrating similar property of former aerated concrete and improving the defects, developing new hardened cement is needed. In this study, we predict adopting possibility of hollow core polyethylene tube, as a material to make cement hardening containing a lot of void. So we changed the mixing ratio, a diameter and length of the polyethylene tube and improved the compressive strength and unit capacity weight of the lightweight cement hardening body. From the test results, we judge that the aerated concrete is a developmental possibility.

  • PDF

Effect of noise and reverberation on subjective measure of speech transmission performance for elderly person with hearing loss in residential space (주거 공간에서 고령자 청력손실을 고려한 소음 및 잔향에 따른 음성 전송 성능의 주관적 평가)

  • Oh, Yang Ki;Ryu, Jong-Kwan;Song, Han-Sol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.369-377
    • /
    • 2018
  • This study investigated the effect of noise and reverberation on subjective measure of speech transmission performance for elderly person with hearing loss in residential space through listening test. Floor impact, road traffic, airborne, and drainage noise were employed as the residential noise, and several impulse responses were obtained through room acoustical computer simulation for an apartment building. Sound sources for the listening test consisted of residential noises and speech sounds for boh the young (the original sound) and the aged (the sound filtered out by filters with frequency responses of hearing loss of 65 years elderly person). In the listening test, subjects evaluated speech intelligibility and listening difficulty for the presented word ($L_{Aeq}$ 55 dB) at three noise levels ($L_{Aeq}$ 30, 40, 50 dB) and three reverberation times (0.5, 1.0, 1.5 s). Results showed that the residential space with noise level lower than equal to 50 dB ($L_{i,Fmax,AW}$) for jumping noise and 40 dB ($L_{Aeq}$) for road traffic, airborne, and drainage noise had speech intelligibility of 90 % and over and listening difficulty of 30 % and below. Speech intelligibility and listening difficulty for the aged sound source was shown to be 0 % ~ 5 % lower and 2 % ~ 20 % higher than those for the young sound source, respectively.