• Title/Summary/Keyword: Flooding duration

Search Result 51, Processing Time 0.024 seconds

Growth and Yield Responses of Soybean to Overhead Flooding Duration at Four Growth Stages (관수시간에 따른 콩의 생육 및 수량반응)

  • 박경열;이종형;조영철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.1
    • /
    • pp.92-97
    • /
    • 1995
  • The objective of this study is to investigate the growth characters of overhead flooded soybean plants at four growth stage. Overhead flooding treatments were applied at the vegetative growth stage ($V_3,\;V_6$) and the reproductive stage ($R_2,\;R_4$) for 6.12.24 hrs, respectively. Yield and yield components were more decreased as the overhead flooding duration was longer and the growth stage was later. Yield was not reduced significantly in soybean plants flooded at $V_3$ stage regardless of flooding duration, and flooded 6 or 12 hrs at $V_6$ stage. When compared to the control, 27 to 36% of yield reduction was observed in soybean plants flooded for 24 hrs at $V_6$ stage, 6 or 12 hrs at $R_2$ stage, and 6 hrs at $R_4$ stage. And 43%, 53% and 66% of yield were reduced through the flooding treatment for 24 hrs at $R_2$ stage 12 hrs and 24 hrs at $R_4$ stage, respectively. So yield reduction was higher in overhead flooded soybean plants at the reproductive stage than that at the vegetative growth stage.

  • PDF

Estimation of Inundation Area by Linking of Rainfall-Duration-Flooding Quantity Relationship Curve with Self-Organizing Map (강우량-지속시간-침수량 관계곡선과 자기조직화 지도의 연계를 통한 범람범위 추정)

  • Kim, Hyun Il;Keum, Ho Jun;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.839-850
    • /
    • 2018
  • The flood damage in urban areas due to torrential rain is increasing with urbanization. For this reason, accurate and rapid flooding forecasting and expected inundation maps are needed. Predicting the extent of flooding for certain rainfalls is a very important issue in preparing flood in advance. Recently, government agencies are trying to provide expected inundation maps to the public. However, there is a lack of quantifying the extent of inundation caused by a particular rainfall scenario and the real-time prediction method for flood extent within a short time. Therefore the real-time prediction of flood extent is needed based on rainfall-runoff-inundation analysis. One/two dimensional model are continued to analyize drainage network, manhole overflow and inundation propagation by rainfall condition. By applying the various rainfall scenarios considering rainfall duration/distribution and return periods, the inundation volume and depth can be estimated and stored on a database. The Rainfall-Duration-Flooding Quantity (RDF) relationship curve based on the hydraulic analysis results and the Self-Organizing Map (SOM) that conducts unsupervised learning are applied to predict flooded area with particular rainfall condition. The validity of the proposed methodology was examined by comparing the results of the expected flood map with the 2-dimensional hydraulic model. Based on the result of the study, it is judged that this methodology will be useful to provide an unknown flood map according to medium-sized rainfall or frequency scenario. Furthermore, it will be used as a fundamental data for flood forecast by establishing the RDF curve which the relationship of rainfall-outflow-flood is considered and the database of expected inundation maps.

Flooding Risk Assessment Using Flooding Characteristic Values (침수특성치를 이용한 침수위험성 평가)

  • Ahn, Jeonghwan;Kim, Kunwoo;Cho, Woncheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.957-964
    • /
    • 2013
  • This research is on the methodology of flood risk assessment using flooding characteristic values. Necessity of design magnitude for flood control considering floods was judged by plotting peak flow with respect to frequency and duration, and flooding magnitude was defined with 6 flooding characteristic values which were proposed to be significant factors when assessing flooding magnitude. Precipitation data used in the assessment modeling were applied by combining all the possible precipitation events. After overlapping the simulated results with precipitation matrix by flooding characteristic values, contour map was drawn, and Flooding characteristic contour graph for possible rainfall events were suggested in respect of all possible precipitation. Flooding characteristic contour graph for possible rainfall events was confirmed that reducing of damage magnitude of each flood characteristic value was figured out easily. The flood risk assessment methods suggested in this study would be a good reference for urban drainage system design, which only focuses on pipe conduit.

A Study on the Flooding Risk Assessment of Energy Storage Facilities According to Climate Change (기후변화에 따른 에너지 저장시설 침수 위험성 평가에 관한 연구)

  • Ryu, Seong-Reul
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.10-18
    • /
    • 2022
  • Purpose: For smooth performance of flood analysis due to heavy rain disasters at energy storage facilities in the Incheon area, field surveys, observational surveys, and pre-established reports and drawings were analyzed. Through the field survey, the characteristics of pipelines and rivers that have not been identified so far were investigated, and based on this, the input data of the SWMM model selected for inundation analysis was constructed. Method: In order to determine the critical duration through the probability flood analysis according to the calculation of the probability rainfall intensity by recurrence period and duration, it is necessary to calculate the probability rainfall intensity for an arbitrary duration by frequency, so the research results of the Ministry of Land, Transport and Maritime Affairs were utilized. Result: Based on this, the probability of rainfall by frequency and duration was extracted, the critical duration was determined through flood analysis, and the rainfall amount suggested in the disaster prevention performance target was applied to enable site safety review. Conclusion: The critical duration of the base was found to be a relatively short duration of 30 minutes due to the very gentle slope of the watershed. In general, if the critical duration is less than 30 minutes, even if flooding occurs, the scale of inundation is not large.

Analysis on Inundation Characteristics for Flood Impact Forecasting in Gangnam Drainage Basin (강남지역 홍수영향예보를 위한 침수특성 분석)

  • Lee, Byong-Ju
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.189-197
    • /
    • 2017
  • Progressing from weather forecasts and warnings to multi-hazard impact-based forecast and warning services represents a paradigm shift in service delivery. Urban flooding is a typical meteorological disaster. This study proposes support plan for urban flooding impact-based forecast by providing inundation risk matrix. To achieve this goal, we first configured storm sewer management model (SWMM) to analyze 1D pipe networks and then grid based inundation analysis model (GIAM) to analyze 2D inundation depth over the Gangnam drainage area with $7.4km^2$. The accuracy of the simulated inundation results for heavy rainfall in 2010 and 2011 are 0.61 and 0.57 in POD index, respectively. 20 inundation scenarios responding on rainfall scenarios with 10~200 mm interval are produced for 60 and 120 minutes of rainfall duration. When the inundation damage thresholds are defined as pre-occurrence stage, occurrence stage to $0.01km^2$, 0.01 to $0.1km^2$, and $0.1km^2$ or more in area with a depth of 0.5 m or more, rainfall thresholds responding on each inundation damage threshold results in: 0 to 20 mm, 20 to 50 mm, 50 to 80 mm, and 80 mm or more in the rainfall duration 60 minutes and 0 to 30 mm, 30 to 70 mm, 70 to 110 mm, and 110 mm or more in the rainfall duration 120 minutes. Rainfall thresholds as a trigger of urban inundation damage can be used to form an inundation risk matrix. It is expected to be used for urban flood impact forecasting.

Effects of Depth and Duration of Flooding on Growth and Yield at Different Growth Stage in Pepper(Capsicum annuum L.);I. Response to Flooding at Seedling Stage (고추(Capsicum annuum L.)의 생육단계별(生育段階別) 침수처리(浸水處理)에 따른 생육반응(生育反應);I. 유묘기(幼苗期) 반응(反應))

  • Guh, Ja-Ock;Kuk, Yong-In
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.3
    • /
    • pp.325-334
    • /
    • 1996
  • Pepper plants were flooded at 0, 5, 10 and 15cm at seedling stage under the condition of greenhouse. Treatment of flooding times are 6, 12, 24, 48 and 120 hours. The results obtained are summarized as follows. Plant height, number of leaves, shoot and root fresh weight were not recovered the flooding damages regardless of flooding time and depth. Pepper plant died in flooding depth of 5cm or more for over 48 hours. Plants in fallen leaves were found at more than 5cm depth and 6 hours of floodings. Photosynthesis and respiration rate decreased in the 5cm flooding depth or more for 24 hours. Chlorophyll content and root activity decreased for 12 hours or more at all the flooding depth. Also, diffusion resistance of stomata cell increased as increased flooding time and depth. Diseases occurred remarkably in proportion to the depth and hours of flooding treatment. It was not possible to control the desease by fungicide, also then was no effects of foliar spray of urea. Weight of fruit per plant not decrease by the 12 hours of 0cm and the 6 hours of 5cm flooding but decreased at deeper and longer flooding. Average weight of a fruit increased. The yield could not expected in the depth of 5cm or more for over 48 hours, There was significant positive correlation between all the investigated characteristics of growth and yield. There was, however, negative correlation between number of leaf and diffusion resistance of stomata.

  • PDF

Reducing Flooding Latency in Power Save Mode of IEEE 802.11-based Mobile Ad hoc Networks (IEEE 802.11 기반 이동 애드혹 망의 전력 절감 모드에서 플러딩 지연의 개선)

  • 윤현주;서명환;마중수
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.5
    • /
    • pp.532-543
    • /
    • 2004
  • Mobile Ad hoc NETworks (MANET) consist of mobile nodes which are usually powered by battery Approaches for minimizing power consumption have been proposed for all network layers and devices. IEEE 802.11 DCF (Distributed Coordination Function), a well-known medium access control protocol for MANETS, also defines a power save mode operation. The nodes in power save mode periodically repeat the awake state and the doze state in synchronized fashion. When all nodes are in the awake state, the exchange the announcements for the subsequent message transmission with neighbors. The nodes that send or receive the announcements stay awake for data transmission, and others go into the dole state. The previous works for enhancing the power save mode operation have focused on shortening the duration of the awake state. We observed that the longer sleeping period results in seriously long delivery latency and the consequent unnecessary power consumption as well, because the packets can move forward only one hop for a fixed interval. In this paper, we propose an improved protocol for the power save mode of IEEE 802.11 DCF, which allows the flooding packets to be forwarded several hops in a transmission period. Our approach does not reduce the duration of compulsory awake period, but maximizes its utilization. Each node propagates the announcements for next flooding to nodes of several hops away, thus the packets can travel multiple hops during one interval. Simulation results of comparison between our scheme and the standard show a reduction in flooding delay maximum 80%, and the unicasting latency with accompanying flooding flows near 50%, with slight increase of energy consumption.

Analysis of Flooding Damage by Heavy Rain on 'Fuji'/M.26 Apple Tree (집중호우에 의한 '후지'/M.26 사과나무의 침수 피해 분석)

  • Choi, Seong Yong;Huh, Min-Soon
    • Horticultural Science & Technology
    • /
    • v.19 no.3
    • /
    • pp.362-366
    • /
    • 2001
  • This survey was carried out to investigate the effect of flooding by heavy rain on growth characteristics and disease incidence of 'Fuji'/M.26 mature apple tree in 1998 at Kyongbuk province. The surveyed regions were Andong, Uisung, and Gunwi area. The six orchards were selected from one area, totally 18 orchards were surveyed. The flooded depth of surveyed orchards was from 70 to 350 cm, and the flooded duration was from 6 to 72 h. Defoliation ratio, number of abnormal budding, and flowering per tree were increased along with the increment of flooded depth and duration. Rooting ratio was decreased rapidly with the increment of flooded duration, and dead root ratio was 16.2% in flooded orchards. Marssonia blotch (Diplocarpon mali), white rot (Botryosphaeria dothidea) of fruit, and phytophthora fruit rot (Phytophthora cactorum) incidence were increased in flooded orchards. The analysis results of pearson correlation coefficient among surveyed items showed that higher relationship of abnormal growth characteristics and increment of disease incidence of 'Fuji'/M.26 apple trees with flooded duration than with flooded depth. With these results, the flooded depth was found to be the main factor for the abnormal growth characteristics and disease incidences of 'Fuji'/M.26 apple trees.

  • PDF