• Title/Summary/Keyword: Flooding Depth

Search Result 150, Processing Time 0.036 seconds

Correction of Secondary ion Mass Spectrometry depth profile distorted by oxygen flooding (Oxygen flooding에 의해 왜곡된 SIMS depth profile의 보정)

  • 이영진;정칠성;윤명노;이순영
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.225-233
    • /
    • 2001
  • Distortion of Secondary Ion Mass Spectrometry(SIMS) depth profile, which is usually observed when the analysis is made using oxygen flooding on the surface of Si with oxide on it, has been corrected. The origin of distortion has been attributed to depth calibration error due to sputter rate difference and concentration calibration error due to relative sensitivity factor(RSF) difference between $SiO_2$ and Si layers, In order to correct depth calibration error, artifact in analysis of sodium ion on oxide was used to define the interface in SIMS depth profile and oxide thickness was measured with SEM and XPS. The differences of sputter rate and RSF between two layers have been attributed to volume swelling of Si substrate occurred by oxygen flooding induced oxidation. The corrected SIMS depth profiles showed almost the same results with those obtained without oxygen flooding.

  • PDF

Effects of Depth and Duration of Flooding on Growth and Yield at Different Growth Stage in Pepper(Capsicum annuum L.);I. Response to Flooding at Seedling Stage (고추(Capsicum annuum L.)의 생육단계별(生育段階別) 침수처리(浸水處理)에 따른 생육반응(生育反應);I. 유묘기(幼苗期) 반응(反應))

  • Guh, Ja-Ock;Kuk, Yong-In
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.3
    • /
    • pp.325-334
    • /
    • 1996
  • Pepper plants were flooded at 0, 5, 10 and 15cm at seedling stage under the condition of greenhouse. Treatment of flooding times are 6, 12, 24, 48 and 120 hours. The results obtained are summarized as follows. Plant height, number of leaves, shoot and root fresh weight were not recovered the flooding damages regardless of flooding time and depth. Pepper plant died in flooding depth of 5cm or more for over 48 hours. Plants in fallen leaves were found at more than 5cm depth and 6 hours of floodings. Photosynthesis and respiration rate decreased in the 5cm flooding depth or more for 24 hours. Chlorophyll content and root activity decreased for 12 hours or more at all the flooding depth. Also, diffusion resistance of stomata cell increased as increased flooding time and depth. Diseases occurred remarkably in proportion to the depth and hours of flooding treatment. It was not possible to control the desease by fungicide, also then was no effects of foliar spray of urea. Weight of fruit per plant not decrease by the 12 hours of 0cm and the 6 hours of 5cm flooding but decreased at deeper and longer flooding. Average weight of a fruit increased. The yield could not expected in the depth of 5cm or more for over 48 hours, There was significant positive correlation between all the investigated characteristics of growth and yield. There was, however, negative correlation between number of leaf and diffusion resistance of stomata.

  • PDF

Emergence Characteristics of Weedy Rice under Flooding depth (담수 처리에 따른 잡초성벼의 출현 변화)

  • Hwang, Woon-Ha;Jeong, Jae-Hyeok;Lee, Hyeon-Seok;Park, Tae-Sun;Yang, Seo-Young;Choi, In-Bae;Choi, Kyung-Jin
    • Weed & Turfgrass Science
    • /
    • v.7 no.3
    • /
    • pp.171-179
    • /
    • 2018
  • We investigated changes of weedy rice emergence and seed condition under different flooding depth condition using 100 accessions of weedy rice germplasm collected in South Korea. In 1 cm of soil buried depth condition, 54 and 57% of emergence was reduced under 5 and 10 cm of flooding depth conditions respectively compared to non-flooding condition. In 5 cm of soil buried depth condition, 66 and 84% of emergence was reduced under 5 and 10 cm of flooding depth conditions respectively compared to non-flooding condition. The 94% of weedy rice germplasm showed less than 10% of emergence rate at 10 cm of flooding depth condition. In flooding condition, seed number, which germinated but did not emerged, was increased. As a result of analyzing the correlation between effective accumulated temperature and seed condition, dead seed rate increased and germination rate decreased depending on effective accumulated temperature. However, emergence rate did not show significant correlation with growth temperature condition under flooding condition such as 5 or 10 cm of water depth, it decreased according to flooding period. In order to reduce the emergence rate of weedy rice, longer than 21 days of flooding might be needed.

Oxygen flooding을 이용한 shallow junction SIMS 분석

  • 이영진;정칠성;박주철;최홍민
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.171-171
    • /
    • 2000
  • 차세대 반도체 제조에서 Design rule 이 점점 더 shrink 됨에 따라 shallow junction 분석의 중요성이 강조되고 있다. 이러한 shallow junction에 대한 분석방법중의 하나인 SIMS 분석에 있어서 depth resolution을 향상시키는 것이 중요하며, 일차이온의 에너지를 낮추어 줌으로써 이러한 효과를 달성할 수 있다. 그러나 최근의 연구에 따르면 O2+를 이용한 low energy SIMS 분석 시에 non-zero incidence angle로 분석할 경우 surface roughness가 발생한다는 사실이 보고되었으며, surface roughness를 줄이고 분석 초기의 transient region을 줄이기 위한 방법으로 oxygen flooding을 사용하는 경우 특정 각도에서 surface roughness가 여전히 존재할 뿐 아니라 분석 초기영역에서의 sputter rate이 변화하는 문제가 있음이 보고된바 있다. 본 연구에서는 2keV O2+ 일차이온을 이용하여 oxygen flooding 하에서 기존 조건인 60도 incidence로 분석하는 방법의 문제점을 파악하고 incidence angle을 45도로 바꾸어 분석하는 방법을 검토하였다. 그 결과 기존의 분석조건에서는 분석도중 표면부근에서 sputter rate이 변화하고 surface roughness가 증가하는 것을 확인하였고, 그로 인하여 oxygen flooding을 하지 않은 경우와 많은 차이가 발생하는 것을 발견하였다. Incidence angle을 45도로 바꾼 결과 이러한 문제가 해결되는 것을 확인하였으며, 특히 GaAs $\delta$layer 분석을 통하여 이 분석조건이 기존의 분석조건에 비하여 획기적으로 향상되는 것을 확인 할 수 있었다. 또한 여러 가지 shallow junction 분석을 통하여 이 분석방법이 상당히 신뢰성이 있음을 알 수 있었다. 그러나 여전히 oxygen flooding을 하지 않은 경우에 비하여 다소간의 차이가 있는 것이 발견되었는데, 이는 주로 표면에 잔존하는 산화막에 의한 효과와 oxygen flooding에서 보다 더 depth resolution이 좋음으로 인하여 발생하는 것으로 추정되었으며 그 밖에 다른 가능성도 제기되었다. 따라서 이 방법은 표면 산화막이 거의 없는 시료에 대하여 적용한다면 oxygen flooding을 하지 않은 경웨 비하여 transient region이 거의 없고 junction depth를 보다 신뢰성 있게 측정할 수 잇는 장점이 있는 것으로 판단되었다. As, P의 저 에너지이온 주입시료에 대해 이 분석방법을 적용할 경우 C+s 분석법에 비하여 depth resolution을 비교적 쉽게 향상시킬 수 있었고, oxygen follding을 쓰지 않은 경우에 비해서는 검출한도를 약 100배 정도 향상시킬 수 있었다. 그러나 2.5keV Cs+ 분석법에 비하면 아직 depth resolution이 불충분하여 실제로 shallow As 분석에 적용하기에는 다소 문제점이 있었다.

  • PDF

Changes of Soil Salinity due to Flooding in Newly Reclaimed Saline Soil (신간척지 토양에서 담수에 의한 토양염도 변화에 대한 개관)

  • Ryu, J.H.;Yang, C.H.;Kim, T.K.;Lee, S.B.;Kim, S.;Baek, N.H.;Choi, W.Y.;Kim, S.J.;Chung, D.Y.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.45-46
    • /
    • 2009
  • This study was carried out to identify the changes of EC during desalinization due to flooding in newly reclaimed saline soil. To do this, experimental plots were made of rotary tillage+water exchanging plot, flooding plot and rainfall flooding plot. In rotary tillage+water exchanging plot, drainage, rotary tillage and flooding were conducted at the interval of 7 days. In rotary tillage+water exchanging plot and flooding plot, plots were irrigated at the height of 10 cm. After 38 days desalinization, changes of EC values at top soil (0~20 cm) were as follows. In rotary tillage+water exchanging plot, EC decreased from $21.38dS\;m^{-1}$ to $2.16dS\;m^{-1}$ and in flooding plot, EC decreased from $13.97dS\;m^{-1}$ to $2.22dS\;m^{-1}$. In rotary tillage+water exchanging plot and flooding plot, EC values decreased below the EC criterion ($4.0dS\;m^{-1}$) of saline soil. In rainfall flooding plot, EC values decreased or increased according to amounts of rainfall and rainfall time. After 38 days, EC decreased from $16.7dS\;m^{-1}$ to $12.35dS\;m^{-1}$. In flooding plot, changes of EC due to soil depth were investigated. After 38 days desalinization, changes of EC due to soil depth were as follows. At 0~10 cm depth, EC value decreased from $13.08dS\;m^{-1}$ to $0.74dS\;m^{-1}$ (94.3% of salt was desalinized). At 10~20 cm depth, EC value decreased from $14.80dS\;m^{-1}$ to $3.69dS\;m^{-1}$ (75.2% of salt was desalinized). At 20~30 cm depth, soil was desalinized slowly compared with upper soil, EC value decreased from $13.57dS\;m^{-1}$ to $6.93dS\;m^{-1}$ (48.9% of salt was desalinized).

Development of Machine Learning based Flood Depth and Location Prediction Model (머신러닝을 이용한 침수 깊이와 위치예측 모델 개발)

  • Ji-Wook Kang;Jong-Hyeok Park;Soo-Hee Han;Kyung-Jun Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.91-98
    • /
    • 2023
  • With the increasing flood damage by frequently localized heavy rains, flood prediction research are being conducted to prevent flooding damage in advance. In this paper, we present a machine-learning scheme for developing a flooding depth and location prediction model using real-time rainfall data. This scheme proposes a dataset configuration method using the data as input, which can robustly configure various rainfall distribution patterns and train the model with less memory. These data are composed of two: valid total data and valid local. The one data that has a significant effect on flooding predicted the flooding location well but tended to have different values for predicting specific rainfall patterns. The other data that means the flood area partially affects flooding refers to valid local data. The valid local data was well learned for the fixed point method, but the flooding location was not accurately indicated for the arbitrary point method. Through this study, it is expected that a lot of damage can be prevented by predicting the depth and location of flooding in a real-time manner.

Sowing Method and Flooding Time at Furrow Sowing Culture of Rice in Paddy Field (벼 무논 골 뿌림재배 파종방법 및 담수시기)

  • 송영주;권석주;황창주
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.3
    • /
    • pp.205-210
    • /
    • 1994
  • This experiment was conducted to investigate of soil hardening degree before sowing, furrow depth at sowing and flooding time after sowing at furrowing in flooded rice paddy field that many people have an interest in as direct sowing method most recently. As hardening period was increased, the percentage of seedling stand and seed floating at flooding were increased slightly, while buried depth of stem at maximum tillering stage and cone penetration depth were decreased, respectively. Therefore, optimum degree of soil hardening was about 3 days after draining, at this time, cone penetration degree was about 6~7cm. According to furrow depth was more and more deep, buried depth of stem was increased gradually, but percentage of seedling stand was decreased considerbly. Also, root distribution ratio on surpace horizon and lodging degree were increased gradually according to furrow depth become more and more shallow. As flooding time after sowing was late, percentage of seedling stand and panicle number per $m^2$ were decreased slightly. These results apparently indicated that sowing after 3 days hardening when cone penetration degree was 6~7cm, furrow depth 3~4cm degree and flooding time just after sowing the best method to good establish of seedling stand.

  • PDF

The Analysis of Flooding by Virtual Flood Scenario (가상 홍수시나리오에 의한 홍수범람 해석)

  • 윤희천;엄대용;이용욱;김정우
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.2
    • /
    • pp.181-189
    • /
    • 2003
  • A virtual flood scenario has been constructed to investigate the overflowing process in the flooding area. The topography is constructed using the airborne LIDAR data. In addition, the frequency and scale of the flooding and the destruction condition of the flooding defensive structure are used as input to the scenarios. Through the scenario, the inundation depth with respect to time and maximum depth has been analyzed. This analysis shows the water level variation with time which show the flooding process. Moreover, a flooding map is drawn using the results from the scenario, distribution of the defensive structure, vulnerable area, and expected destruction points in the study area. It is expected that this study can be effectively used to examine the flooding process and flood disaster management. Furthermore, it could provide important basic information for the land development and the city planning of a possible flooding area.

A Study on the Optimum Field Preparation Procedures for the Proper Working Performances of Rice Transplanters (논 써레질한 후의 경과일수 및 담수심이 수도이앙기의 작업성능에 미치는 영향)

  • 홍종호;차균도
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.3
    • /
    • pp.83-91
    • /
    • 1979
  • This study was conducted in order to find out the performance of rice transplanters in accordance with the change of the trans-planting days after pudding and the water depth flooding the paddy field at the time of transplanting : and thus to select the optimum paddy field preparation procedures for an efficient utilization of rice transplanters. The performance factors of the two different types of rice transplanters were measured during the first 6 consecutive days after puddling and with 3 different levels of water depth flooding the paddy fields. The results of this study were analysed and summarized as follows : 1. Wheel sinkage decreased very rapidly from 0 to 2 days after puddling and slowly from 3 to 5 days after puddling. 2. The depth of the test cone penetration decreased rapidly during the first few days after puddling. It was 17.8cm just after puddling, and decreased to 13.4cm one day after puddling. After 2 days, the rate of decrease was dampened, and after 5 days it kept constant value of 9.2cm. 3. Two days after puddling, the hill interval was 15.8cm (98.75% of the preset value) for broadcasted seedling rice transplanter with 3cm flooding depth : This value was the closest to the pre-adjusted value of 16cm. The general performance of broadcasted-seedling type rice transplanter was better than that of strip-seedling type rice transplanter. 4. Usually the working performance of a rice transplanter is evaluated with uniformity and adjustability of the hill intervals. The hill interval was the most uniform and closest to the pre-set value of 16cm when planted two days after puddling with 3cm of water depth. When it was inavoidable to plant 4 days after puddling with stripseedling type rice transplanter, it is advisable to let the water flooded somewhat deeper. 5. The percentage of missing hills including floating and burried seedlings was the highest just after puddling and ie decreased substancially until 3 days after puddling and then it increased again. Hence, the optimal time transplanting is to be between 2 and 3 days after puddling. 6. Better postures of planted seedlings were found when planter 2 days after puddling than 3 days after puddling. Six cm of flooding water depth always gave the best results with respect to the postures of planted seedlings. Broadcasted-seedling rice transplanter, in general, showed better posture of planted seedlings than did strip-seedling type rice transplanter. 7. Judging from the above results, the optimal conditions will be 3cm of flooding depth and transplanting between 2 and 3 days after puddling.

  • PDF

Rice Bran Application under Deep Flooding can Control Weed and Increase Grain Yield in Organic Rice Culture

  • Yan, Yong-Feng;Fu, Jin-Dong;Lee, Byun-Woo
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.79-85
    • /
    • 2007
  • Rice bran application just after transplanting has been increasingly practiced as an herbicide-substitute for organic rice production in Korea. However, this practice is frequently reported to be unsatisfactory in weed suppression. An experiment with five treatments that combines flooding depth, rice bran application dose, and herbicide treatment was done in the paddy field to evaluate whether rice bran application under deep flooding can lead to a successful weed control in compensation for the single practice of rice bran application. Rice bran was broadcasted on the flood water surface just after deep flooding of 8 to 10cm that was started at seven days after transplanting. In the shallow flooding plot without herbicide six weed species were recorded: Monochoria vaginalis, Echinochloa crus-galli, Ludvigia prostrate, Cyperus amuricus, Aneima keisak, and Bidens tripartite. Among the first four dominant weed species, deep flooding significantly suppressed the occurrence of Echinochloa crus-galli and Cyperus amuricus while did not suppress the occurrence of Monochoria vaginalis and Ludwigia prostrate. On the contrary, rice bran application under deep flooding suppressed significantly Monochoria vaginalis and Ludwigia prostrate while didn't exert an additional suppression of Echinochloa crus-galli and Cyperus amuricus compared to deep flooding alone. Rice bran application and deep flooding suppressed complimentarily all the six weed species to a satisfactory extent except for Monochoria vaginalis of which suppression efficacy was 31.9%. Deep flooding reduced the panicle number substantially by inhibiting the tiller production, increased the spikelet number per panicle slightly, and leaded to a lower rice grain yield compared to shallow flooding with herbicide. Rice bran application under deep flooding mitigated the panicle reduction due to deep flooding, increased the spikelets per panicle significantly, and thus produced even higher grain yield in the rice bran application of 2000kg $ha^{-1}$ as compared to the shallow flooding treatment with herbicide. In conclusion, this practice applying rice bran under deep flooding would be promising to be incorporated as an integral practice for an organic rice farming system.

  • PDF