• Title/Summary/Keyword: Flooding Area of River

Search Result 115, Processing Time 0.033 seconds

Determination of Floodplain Restoration Area Based on Old Maps and Analysis on Flood Storage Effects of Flood Mitigation Sections (고지도를 활용한 홍수터 복원 구역 선정 및 홍수완충공간의 홍수 저류효과 분석)

  • Dong-jin Lee;Un Ji;Sanghyuk Kim;Hong-Kyu Ahn;Eun-kyung Jang
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.2
    • /
    • pp.40-49
    • /
    • 2023
  • To reduce the damage of extreme flooding caused by climate change and to create flood mitigation sections in a nature-friendly riparian area, it is necessary to restore the floodplain area by referring to the past floodplain section of the current inland waterfront area before the levee was built. This study proposed a method of selecting a location for floodplain restoration using old maps of the Geum River study section and analyzed the effect of flood level reduction through unsteady flow numerical simulations using the floodplain as a flood mitigation space. As a result of analyzing changes in the river areas using old maps, the river section was estimated to gradually reduce by 27.8% (1,059,380 m2) in 2020 compared to 1919, and it was found to have an effective storage capacity of 2,200,868 m3 when restored to offline storage. The flood level and discharge control effects analyzed based on HEC-RAS unsteady flow simulation were 16 cm and 219.01 m3/s, respectively, in the downstream cross-section. In the numerical simulation in this paper, the flood mitigation space was applied as an offline reservoir. The effect of reducing the flood level may differ if levee retreat/relocation is applied.

Development of 3D GIS System for the Visualization of Flood Inundation Area (홍수범람지역 가시화를 위한 3차원 GIS 시스템 개발)

  • Lee, Geun Sang;Jeong, Il Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5D
    • /
    • pp.749-757
    • /
    • 2008
  • Recently, flood damages have increased with heavy rainfall and typhoon influences, and it requires that visualization information to the flood inundation area of downstream in dam discharge. This study developed 3D GIS system that can visualize flood inundation area for Namgang Dam downstream. First, DEMs extracted from NGIS digital maps and IKONOS satellite images were optimized to mount in iWorld engine using TextureMaker and HeightMaker modules. And flood inundation area of downstream could be efficiently extracted with real-time flooding water level using Coordinate Operation System for Flood control In Multi-reservoir (COSFIM) and Flood Wave routing model (FLDWAV) in river cross section. This visualization information of flood inundation area can be used to examine flood weakness district needed in real time Dam operation and be applied to establish the rapid flood disaster countermeasures efficiently.

The Study on the Flora and Vegetation of Salt Marshes of Dongjin-river Estuary in Jeonbuk (전북 동진강 하구역 일대의 염습지 식물상 및 식생에 관한 연구)

  • Kim Chang-Hwan;Lee Kyeong-Bo;Kim Jae-Duk;Cho Tae-Dong;Kim Mun-Suk
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.817-825
    • /
    • 2005
  • The purpose of this study was to research about salt marsh flora and vegetation in the Dongjin-river estuary area where has a project for Sea Man Geum Reclaimed Land so that we can foster foundation on restoration of an ecological habitat, development of applicable plant and establishment of a conservation policy after deceloping the reclaimed land for salt marsh vegetation which has great value ecologically. In conclusion, we was distributed that there are 7 families 21 genera, 25 species, 2 varieties of vascular plant at the Dongjin-river estuary area which have 27 taxa in total and are $0.64\%$ among 4,191 of korean vascular plant. There are also 2 family, 2 genus, 2 species of a naturalized plant which are $1.1\%$ of indicator of a naturalized plant salt marsh vegetation of the downstream are very much affected by the time of inundation, tidal water so that a low degree of salt marsh has frequent flooding by sea water and has a pure group of Suaeda japonica. A Phragmites communis, Carex scabrifolia are distributed mainly around a waterway of salt marsh and Zoysia sinica, Atriplex subcordata, Phragmites communis are living in stock as forming into patch around medium salt marsh. Suaeda asparagoides, Phacelurus latifolius are living around a little high ground and a Phragmites communis is a behind vegetation of Phacelurus latifolius and a part of the Phragmites communis are living along with waterway in a salt marsh as a community. By the 2-M method twelve plant communities were recognized ; Suaeda japonica. Carex scabrifolia, Zoysia sinica, Artemisia scoparia, Phacelurus latifolius, Phragmites communis, Suaeda maritima, Suaeda japonica-Atriplex gmelini, Phragmites communis-Suaeda japonica, Suaeda japonica-Salicornia herbacea, Salicornia herbacea-Suaeda aspar-agoides and Scirpus planiculmis community. The actual vegetation map was constructed on the grounds of the communities classified and other data.

A Study on the Generation of DEM for Flood Inundation Simulation using NGIS Digital Topographic Maps (NGIS 수치지형도를 이용한 효율적인 홍수범람모의용 지형자료 구축에 관한 연구)

  • Kwon, Oh-Jun;Kim, Kye-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.1 s.35
    • /
    • pp.49-55
    • /
    • 2006
  • Nowadays, flood hazard maps have been generated to minimize the damages from the flooding. To generate such flood hazard maps, LiDAR data can be used as data source with higher data accuracy. LiDAR data, however, requires relatively higher cost and longer processing time. In this background, this study proposed DEM generation using NGIS digital topographic maps. For that, breaklines were processed to count directions of water flows. In addition, the river profile data, unique data source to represent real topography of the river area, were integrated to the breaklines to generate DEM. City of Kuri in Kyunggi Province was selected for this study and 1:1,000 and 1:5,000 topographic maps were integrated to process breaklines and river profile data were also linked to generate DEM. The generated DEM showed relatively lower vertical accuracy from mixing 1:1,000 and 1:5,000 topographic maps since 1:1,000 topographic maps were not available for some portion of the area. However, the DEM generated demonstrated reasonable accuracy and resolution for flood map generation as well as higher cost saving effects. On the contrary, for more efficient utilization of NGIS topographic maps, periodic map updating needs to be made including technical consideration in building breaklines and applying interpolation methods.

  • PDF

Analysis of Channel Changes in Mountain Streams Due to Typhoon Hinnamnor Flood - A Case Study on Shingwangcheon and Naengcheon Streams in Pohang - (태풍 힌남노 홍수로 인한 산지 중소하천의 하도 변화 분석 - 포항 신광천 및 냉천을 사례로 -)

  • Chanjoo Lee;Seong Gi An;Eun-Kyung Jang
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.97-106
    • /
    • 2023
  • This study analyzed morphological changes in the Singwangcheon and Naengcheon streams in Pohang caused by flooding due to Typhoon Hinnamnor. Analysis of the changes in river channel area from the past to recent times using aerial photos and drone-taken images showed that the river width had gradually decreased since the 1960s. However, after the flood, the river width increased again. Changes in the river cross-section before and after the flood show that a large amount of coarse sediment was deposited inside the river bend while the outer bank was eroded. The water levels calculated using HEC-RAS for the pre-flood cross-section based on the flood frequency discharges and estimated discharge from Oer Reservoir were significantly lower than the observed water level, which means that the cross-sectional change was not considered. The results of this study suggest that it is necessary to consider cross-sectional changes due to sediment transport when estimating the flood level of small and medium-sized mountain streams, and it is needed to investigate the geomorphic changes after floods.

Understanding of Surface Water-Groundwater Connectivity in an Alluvial Plain using Statistical Methods (통계기법을 활용한 충적층내 지하수-지표수 연계 특성 해석)

  • Kim, Gyoo-Bum;Son, Young-Chul;Lee, Seung-Hyun;Jeong, An-Chul;Cha, Eun-Jee;Ko, Min-Jeong
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.207-221
    • /
    • 2012
  • A statistical analysis of time series of water level at 27 groundwater monitoring wells was conducted to analyze the surface water-groundwater connectivity in the wide alluvial plains surrounding the Nakdong River, Korea. Change in groundwater level is strongly related to river water level, yielding an average cross-correlation coefficient of 0.601, which is much higher than that between rainfall and groundwater level (0.125). Principal component analysis of groundwater level indicates that wells in the study area can be classified into two groups: wells in Group A are located close to a river, have water levels closely related to river level, and generally show a large increase in groundwater level during heavy rainfall. On the other hand, wells in Group B located far from a river are relatively less related to river level. Including hydrologic and statistical analyses, geochemical analysis and temperature monitoring are additionally required to reveal the relationship between surface water level and groundwater level, and to assess the possibility of groundwater flooding.

Growth Characteristics and Nutrient Loads of Submerged Plants in Flood Control Reservoir around Juam Lake (주암호 홍수조절지내 침수식물체별 생육특성과 영양염류 부하량)

  • Seo, Young-Jin;Seo, Dong-Cheol;Choi, Ik-Won;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Lee, Jun-Bae;Kang, Seok-Jin;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.922-928
    • /
    • 2011
  • In order to properly manage the quality of water in Juam Lake, distributions and growth characteristics of submerged plants in Boknae flood control reservoir were investigated. In addition, the total amount of nutrient load by submerged plants were investigated. The total vegetation area was $1,146,849m^2$ of total flood control reservoirs ($1,848,568m^2$) before flooding. By August 19, all of Boknae flood control reservoir was flooded during rainy season. Dominant plants were MISSA (Miscanthus sacchariflorus), SCPMA (Scirpus fluviatilis) and CRXDM (Carex dimorpholepis) which occupied 87% of all flood control reservoirs. The total amounts of organic matter loads at different submerged plants were great in the order of CRXDM ($501,642kg\;area^{-1}$) > SCPMA ($20,987kg\;area^{-1}$) > MISSA ($3,413kg\;area^{-1}$). The total amounts of nitrogen loads by CRXDM, SCPMA and MISSA under different submerged plants were 56%, 3.9% and 0.8%, respectively. The total amounts of phosphorus loads at different submerged plants were on the order of CRXDM ($1,842kg\;area^{-1}$) > SCPMA ($78kg\;area^{-1}$) > MISSA ($14.8kg\;area^{-1}$). Therefore, the results of this study suggest that organic matter, T-N and T-P in water quality of Juam lake were strongly influenced by submerged plants in flood control reservoir.

Origin, Age and Sedimentation Rate of Mid-Geum River Sediments (금강 중류 하상 퇴적층의 기원과 형성시기 및 퇴적율)

  • Oh, Keun-Chang;Kim, Ju-Yong;Yang, Dong-Yoon;Hong, Sei-Sun;Lee, Jin-Young;Lim, Jae-Soo
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.333-341
    • /
    • 2010
  • Fluvial sediments are widely distributed in present and old river-beds of the mid-Keum River, the tributaries of which are the Yugu and Jeongan Rivers. The basement of the mid-Keum River area consists of Mesozoic granites which are easily eroded compared to Precambrian gneisses, which are exposed in the upper-Keum River area. The provenance of the fluvial sediments includes both the Precambrian gneisses and Mesozoic granites, which occur in the catchment of the mid-Keum River. The coarse-grained sediments were probably transported from the river-beds and the overbank floodings of the main Keum River and its tributaries when the climate was warm and wet. The oldest mud deposits were dated at ca. 9,400 yr BP by the radiocarbon method. It has been estimated that the sand deposits below the dated muds were formed in a period from the Late Pleistocene to the Early Holocene. However we have revealed that the major part of the present river-bed sediments was formed at ca. 3,000-6,000 yr BP, i.e., in the mid- to late Holocene, when summer monsoon was very strong due to climatic changes. We have calculated fluvial sedimentation rates of 0.12-0.16 cm/yr and 0.02-0.09 cm/yr for borehole KJ-29 river-bed sediments and borehole KJ-28 floodplain deposits, respectively. We conclude that the sedimentation rate is higher near the present stream channel than near the floodplain.

Urban Flood Simulation Considering Buildings Resistance Coefficient Based on GIS: Focused on Samcheok City (건물 저항계수에 따른 GIS기반의 밀집 시가지 침수모의 -삼척시가지를 중심으로-)

  • Ji, Juong-Hwan;Kang, Sang-Hyeok
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.211-220
    • /
    • 2010
  • The objective of this paper presents the application of an "integrated urban flood modeling-runoff model, urban flood model and sewer system model-" in a highly urbanized area of Samcheok where is seriously inundated in 2002 and 2003. For this, we demonstrate how couple a 1-D hydrodynamic model of the river, a 2-D hydrodynamic model of the overland (surface) flow, and a sewer network model including each boundary conditions. In order to make data file for the model, topographic information like elevation and share rate of buildings are directly extracted from DEM or topographical source data without data exchange to avoid uncertainty errors. Furthermore, the research is to assess the impacts of Manning n and buildings influences to inundated depth by changing its share ratio from 10 % to 30 % in low-land urban area. As a results, we found out that the urban inundated depth was decreased by Manning n but increased by buildings ratio. The calculated results of inundation was similar with observed one in 2002 and 2003 flooding. Furthermore, the area was also inundated under not riverbank break case in 2002 flooding.

Effects of Reduced Sediment Dynamics on Fluvial Channel Geomorphology in the Jiseok River (유사계의 역동성 감소가 지석천 충적하도의 지형변화에 미치는 영향)

  • Ock, Gi-Young;Lee, Sam-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.445-454
    • /
    • 2012
  • The present study aims to investigate the long-term channel morphological changes derived from channelization, embankment and levee construction works in unregulated fluvial channel of the Jiseock River. Analyses of aerial photographs taken past (Year 1966) and recent (Year 2002) showed the temporally remarkable changes in channel planform such as channel shape, bar migration, vegetation encroachment in bar. During the period, the natural single threading changed into braided types together with decreasing sinuosity by 9.2%, increasing vegetation occupied bar ranged 97% of total bars area. Because such channel morphological changes are closely similar to those in dam downstream channels, we assume that both/either flow regime alteration and/or sediment transport discontinuity may be critical for the fixed channel and spread of vegetated bars even in unregulated river without dam reservoir upstream. We found more reduced frequency and magnitude of flooding water level comparing with past, but no significant alteration of inter annual water level variation. Bed material has been coarsened by 4~5 times and the riverbed has been degraded in overall channel but aggraded locally in conjunction reach of tributaries. The results indicates that reduced sediment dynamics in fluvial channel which derived by bed material coarsening, river bed degradation and unbalanced sediment transport capacity between tributary and mainstem can be a causal factor to trigger channel morphological changes even in unregulated rivers.