• Title/Summary/Keyword: Flooding Algorithm

Search Result 139, Processing Time 0.025 seconds

A Study on Effective Flood Map Generation using NGIS Digital Topographic Maps (효율적인 홍수지도 구축을 위한 NGIS 수치지형도 활용에 관한 연구)

  • 송용철;권오준;김계현
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.449-454
    • /
    • 2004
  • Nowadays, flood hazard maps have been generated to minimize the loss of human lives due to flooding domestically. To generate the flood hazard maps, LiDAR data have mainly been used to provide topographic data. The LiDAR data requires, however, relatively higher cost and processing time. Therefore, the needs of validating possible use of topographic maps as an alternative source of LiDAR, which have been already existed from the NGIS project over the nation, has been raised. In this background, this study has generated a DEM over City of Kuri as a pilot study using conventional 1:1,000 and 1:5,000 topographic maps emphasizing the linkage of river profile with breakline processing algorithm to build the essential topographic data as accurate as possible. The results showed that the RMSE from topographic maps and LiDAR were 3.49 and 2.282 meter, respectively. Further study needs to be made to decide possible use of topographic maps instead of LiDAR including more easier updating of topographic maps to support flood map generation. In addition, 1:1,000 topographic mapping, which is limited to the urban areas so far, needs to be extended to the river areas.

  • PDF

Adaptive Sea Level Prediction Method Using Measured Data (관측치를 이용한 적응적 조위 예측 방법)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.891-898
    • /
    • 2017
  • Climate changes consistently cause coastal accidents such as coastal flooding, so the studies on monitoring the marine environments are progressing to prevent and reduce the damage from coastal accidents. In this paper, we propose a new method to estimate the sea level which can be applied to the tidal sensors to monitor the variation of sea level. Existing sea level models are very complicated and need a lot of tidal data, so they are not proper for tidal sensors. On the other hand, the proposed algorithm is very simple but precise since we use the measured data from the sensor to estimate the sea level value in short period such as one or two hours. It is shown by experimental results that the proposed method is simple but predicts the sea level accurately.

A study on the Robust and Systolic Topology for the Resilient Dynamic Multicasting Routing Protocol

  • Lee, Kang-Whan;Kim, Sung-Uk
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.255-260
    • /
    • 2008
  • In the recently years, there has been a big interest in ad hoc wireless network as they have tremendous military and commercial potential. An Ad hoc wireless network is composed of mobile computing devices that use having no fixed infrastructure of a multi-hop wireless network formed. So, the fact that limited resource could support the network of robust, simple framework and energy conserving etc. In this paper, we propose a new ad hoc multicast routing protocol for based on the ontology scheme called inference network. Ontology knowledge-based is one of the structure of context-aware. And the ontology clustering adopts a tree structure to enhance resilient against mobility and routing complexity. This proposed multicast routing protocol utilizes node locality to be improve the flexible connectivity and stable mobility on local discovery routing and flooding discovery routing. Also attempts to improve route recovery efficiency and reduce data transmissions of context-awareness. We also provide simulation results to validate the model complexity. We have developed that proposed an algorithm have design multi-hierarchy layered networks to simulate a desired system.

A Study on Simulation of Doppler Spectra in a Current Velocity Radar (유속 레이다에서의 도플러 스펙트럼 모의구현에 관한 연구)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2101-2107
    • /
    • 2012
  • A current velocity measurement radar for a river or a stream estimates Doppler frequencies of return echoes to extract the corresponding surface velocity information. It is very important to maintain the reliability and accuracy of these velocity estimates for water resource management such as flooding or drought conditions. However, received Doppler spectra of water surface return echoes have very widely varying shapes according to different measurement environments and weather conditions. Therefore, serious problems may arise in maintaining the reliability and accuracy of velocity estimating algorithm in a radar sensor because of Doppler spectra which can have many different kind of shapes. Therefore, in this paper, an appropriate Doppler spectrum model is suggested to simulate many various Doppler spectra. This model can be very useful in validating the reliability and accuracy of surface velocity estimates.

An Energy Efficient Explicit Disjoint Multipath Routing in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적인 명시적 분리형 다중경로 라우팅 방법)

  • Oh, Hyun-Woo;Jang, Jong-Hyun;Moon, Kyeong-Deok;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12A
    • /
    • pp.1160-1170
    • /
    • 2010
  • Existing multipath routing mechanism has much overhead to maintain the state of nodes on the multipath route and does not guarantees completely disjoint multipath construction from source to destination. In this paper, we propose an Explicit Disjoint Multipath (EDM) routing algorithm to enhance energy efficiency through removing the flooding mechanism for route discovery process, minimizing the number of nodes participating in route update and balancing the traffic load for entire network. EDM constructs logical pipelines which can create disjoint multipaths in logical way. Then it physically performs anchor node based geographic routing along the logical pipeline in order to build multipath to the destination. EDM can provide the distribution effect of traffic load over the network, help to balance the energy consumption and therefore extend the network lifetime.

Performance Comparison of MISP-based MANET Strong DAD Protocol

  • Kim, Sang-Chul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3449-3467
    • /
    • 2015
  • A broadcast operation is the fundamental transmission technique in mobile ad-hoc networks (MANETs). Because a broadcast operation can cause a broadcast storm, only selected forwarding nodes have the right to rebroadcast a broadcast message among the one-hop and two-hop neighboring nodes of a sender. This paper proposes the maximum intersection self-pruning (MISP) algorithm to minimize broadcasting redundancy. Herein, an example is given to help describe the main concept of MISP and upper bounds of forward node have been derived based on induction. A simulation conducted demonstrated that when conventional blind flooding (BF), self-pruning (SP), an optimized link state routing (OLSR) multipoint relay (MPR) set, and dominant pruning (DP), are replaced with the MISP in executing Strong duplicate address detection (DAD), the performances in terms of the energy consumption, upper bounds of the number of forward nodes, and message complexity have been improved. In addition, to evaluate the performance in reference to the link error probability, Pe, an enhancement was achieved by computing a proposed retransmission limit, S, for error recovery based on this probability. Retransmission limit control is critical for efficient energy consumption of MANET nodes operating with limited portable energy where Strong DAD reacts differently to link errors based on the operational procedures.

A Two level Detection of Routing layer attacks in Hierarchical Wireless Sensor Networks using learning based energy prediction

  • Katiravan, Jeevaa;N, Duraipandian;N, Dharini
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4644-4661
    • /
    • 2015
  • Wireless sensor networks are often organized in the form of clusters leading to the new framework of WSN called cluster or hierarchical WSN where each cluster head is responsible for its own cluster and its members. These hierarchical WSN are prone to various routing layer attacks such as Black hole, Gray hole, Sybil, Wormhole, Flooding etc. These routing layer attacks try to spoof, falsify or drop the packets during the packet routing process. They may even flood the network with unwanted data packets. If one cluster head is captured and made malicious, the entire cluster member nodes beneath the cluster get affected. On the other hand if the cluster member nodes are malicious, due to the broadcast wireless communication between all the source nodes it can disrupt the entire cluster functions. Thereby a scheme which can detect both the malicious cluster member and cluster head is the current need. Abnormal energy consumption of nodes is used to identify the malicious activity. To serve this purpose a learning based energy prediction algorithm is proposed. Thus a two level energy prediction based intrusion detection scheme to detect the malicious cluster head and cluster member is proposed and simulations were carried out using NS2-Mannasim framework. Simulation results achieved good detection ratio and less false positive.

Hybrid Scaling Based Dynamic Time Warping for Detection of Low-rate TCP Attacks

  • So, Won-Ho;Yoo, Kyoung-Min;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.592-600
    • /
    • 2008
  • In this paper, a Hybrid Scaling based DTW (HS-DTW) mechanism is proposed for detection of periodic shrew TCP attacks. A low-rate TCP attack which is a type of shrew DoS (Denial of Service) attacks, was reported recently, but it is difficult to detect the attack using previous flooding DoS detection mechanisms. A pattern matching method with DTW (Dynamic Time Warping) as a type of defense mechanisms was shown to be reasonable method of detecting and defending against a periodic low-rate TCP attack in an input traffic link. This method, however, has the problem that a legitimate link may be misidentified as an attack link, if the threshold of the DTW value is not reasonable. In order to effectively discriminate between attack traffic and legitimate traffic, the difference between their DTW values should be large as possible. To increase the difference, we analyze a critical problem with a previous algorithm and introduce a scaling method that increases the difference between DTW values. Four kinds of scaling methods are considered and the standard deviation of the sampling data is adopted. We can select an appropriate scaling scheme according to the standard deviation of an input signal. This is why the HS-DTW increases the difference between DTW values of legitimate and attack traffic. The result is that the determination of the threshold value for discrimination is easier and the probability of mistaking legitimate traffic for an attack is dramatically reduced.

Attack Detection Algorithm Using Exponential Smoothing Method on the IPv6 Environment (IPv6 환경에서 지수 평활법을 이용한 공격 탐지 알고리즘)

  • Koo Hyang-Ohk;Oh Chang-Suk
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.6
    • /
    • pp.378-385
    • /
    • 2005
  • Mistaking normal packets for harmful traffic may not offer service in conformity with the intention of attacker with harmful traffic, because it is not easy to classify network traffic for normal service and it for DDoS(Distributed Denial of Service) attack. And in the IPv6 environment these researches on harmful traffic are weak. In this dissertation, hosts in the IPv6 environment are attacked by NETWOX and their attack traffic is monitored, then the statistical information of the traffic is obtained from MIB(Management Information Base) objects used in the IPv6. By adapting the ESM(Exponential Smoothing Method) to this information, a normal traffic boundary, i.e., a threshold is determined. Input traffic over the threshold is thought of as attack traffic.

  • PDF

Optimization of Condensate Water Drain Logic Depending on the Characteristics of Drain Valve in FPS of Fuel Cell Vehicle and Development of Anode Water Management Strategy to Achieve High Fuel Efficiency and Operational Stability (연료전지 자동차 내 수소 공급 시스템에서 드레인 밸브 특성에 따른 드레인 로직 최적화 및 연비와 운전안정성을 고려한 물 관리 전략 개발)

  • AHN, DEUKKUEN;LEE, HYUNJAE;SHIM, HYOSUB;KIM, DAEJONG
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.2
    • /
    • pp.155-162
    • /
    • 2016
  • A proton exchange membrane fuel cell (PEMFC) produces only water at cathode by an electrochemical reaction between hydrogen and oxygen. The generated water is transported across the membrane from the cathode to the anode. The transported water collected in water-trap and drained to the cathode within the humidifier outlet. If the condensate water is not being drained at the appropriate time, condensate water in the anode can cause the performance degradation or fuel efficiency degradation of fuel cell by the anode flooding or unnecessary hydrogen discharge. In this study, we proposed an optimization method of condensate water drain logic for the water drain performance and the water drain algorithm as considered the condensate water generating speed prep emergency case. In conclusion, we developed the water management strategy of fuel processing system (FPS) as securing fuel efficiency and operating stability.