• Title/Summary/Keyword: Flood season

Search Result 249, Processing Time 0.028 seconds

Analysis of Physicochemical Characteristics of Suspended Sediments Flowing into the Saemangeum Reservoir in the Summer (하절기 새만금호 유입유사의 물리화학적 특성 분석)

  • Oh, Kyoung-Hee;Chung, Se-Woong;Cho, Young-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.99-106
    • /
    • 2015
  • To estimate the effects of suspended sediments flowing into the Saemangeum Reservoir on the extent of contamination of the reservoir, the suspended sediments were collected with sediment traps, which were installed from the upstream of the Mankyung and Dongjin Rivers to estuary of the reservoir, respectively, and the sedimentation rates and the chemical characteristics of suspended sediments were analyzed. The sedimentation rates in the Mankyung and Dongjin Rivers were ranged from 0.01~5.06 and $0.01{\sim}8.75kg/m^2/day$, respectively. Those were higher to the upstream of rivers, and were mainly affected by flood events. The concentrations of organic matters were from 3.3 to 9.6 times higher than those in the stream sediments and were higher after flood season, indicating the contaminants come from the non-point sources on the basin. The concentrations of total nitrogen and total phosphorus in the suspended sediments showed the same trend with the organic matters. These results indicate that the suspended sediments from the basin of the Mankyung and Dongjin Rivers are highly contaminated and the countermeasures to manage the sources of contamination on the basin are required to maintain the water quality of the Saemangeum Reservoir.

River Ecosystem and Floristic Characterization of Riparian Zones at the Youngjeong River, Sacheon-ci, Korea (사천시 용정천에서 하천 생태계와 하안단구 지역의 수변식물상)

  • Huh, Man Kyu
    • Journal of Life Science
    • /
    • v.27 no.3
    • /
    • pp.301-309
    • /
    • 2017
  • This study is examined river naturality and vegetative composition of river riparian zones to identify their most important sources of variation. Information on plant species cover and on physical characteristics that occur at upper, medium, and low areas was collected for 30 riparian plots located throughout the Youngjeong River in Korea. The riparian areas of river banks are dominated by mixed sediment and the vegetation is composed of herbs, shrub, and trees. The floristic characterization of riparian at this river during 2015 season was identified with a total of 28 families, 72 genera, 75 species, 13 varieties, 23 associations. The vegetations of low water's edge and flood way at upper region were naturally formed various vegetation communities by natural erosion. Forty plant species were identified around the upper region, where the dominant growth form was mostly trees. The flood way vegetation at middle region was both of natural vegetation and artificial vegetation. Land uses in riparian zones river levee at low region were bush or grassland as natural floodplain. The values of cover-abundance at upper, middle, and low region were total 9.26, 7.24, and 7.56, respectively. Grasses and forbs at the Youngjeong River have similar cover-abundance values. Recent, many riparian areas of this river have been lost or degraded for commercial and industrial developments. Thus, monitoring for biological diversity of plant species of this river is necessary for an adaptive management approach and the successful implementation of ecosystem management.

Trace Metals of Suspended Particulate Matters in the Keum River (금강 부유물중 미량 금속의 함량과 이동)

  • 최만식;이창복
    • 한국해양학회지
    • /
    • v.30 no.5
    • /
    • pp.371-381
    • /
    • 1995
  • To investigate the concentrations and transport patterns of particulate metals in river suspended matters, eighteen samples were collected from a fixed station located in the upper part of the Keum River through one year, and analysed for major elements (AI, Fe, P, Mn) and trace elements (Cr, Co, Ni, Cu, Zn, Cd, Pb, U). The contents of metals in suspended particulate matters (SPM) varied greatly with season and SPM load; maximum value in winter with low SPM level and minimum value in flood period and in spring Yangtze SPMs. The different trace metal level between rivers of Korea and China may be caused by the different geology of drainage basin(U) and by the different extent of anthropogenic input (Mn, Pb). Most of all particulate metals (>70%) except Mn, P and Cd were transported in the flood period with high water discharge and high suspended load. The magnitude of each transport phase (dissolved, non-detrital and detrital metals) was compared. The portions of labile metals (dissolved plus non-detrital metals) in the aquatic environment were in the range of 50%(Co) to 92%(Mn) of total metal transport and in the rank of Mn>Cd, U>Cu>Zn>Ni>Pb>Co.

  • PDF

Uncertainty of Discharge-SS Relationship Used for Turbid Flow Modeling (탁수모델링에 사용하는 유량-SS 관계의 불확실성)

  • Chung, Se-Woong;Lee, Jung-Hyun;Lee, Heung-Soo;Maeng, Seung-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.12
    • /
    • pp.991-1000
    • /
    • 2011
  • The relationship between discharge (Q) and suspended sediment (SS) concentration often is used for the estimation of inflow SS concentration in reservoir turbidity modeling in the absence of actual measurements. The power function, SS=aQb, is the most commonly used empirical relation to determine the SS load assuming the SS flux is controlled by variations of discharge. However, Q-SS relation typically is site specific and can vary depending on the season of the year. In addition, the relation sometimes shows hysteresis during rising limb and falling limb for an event hydrograph. The objective of this study was to examine the hysteresis of Q-SS relationships through continuous field measurements during flood events at inflow rivers of Yongdam Reservoir and Soyang Reservoir, and to analyze its effect on the bias of SS load estimation. The results confirmed that Q-SS relations display a high degree of scatter and clock-wise hysteresis during flood events, and higher SS concentrations were observed during rising limb than falling limb at the same discharge. The hysteresis caused significant bias and underestimation of SS loading to the reservoirs when the power function is used, which is important consideration in turbidity modeling for the reservoirs. As an alternative of Q-SS relation, turbidity-SS relation is suggested. The turbidity-SS relations showed less variations and dramatically reduced the bias with observed SS loading. Therefore, a real-time monitoring of inflow turbidity is necessary to better estimate of SS influx to the reservoirs and enhance the reliability of reservoir turbidity modeling.

Water temperature assessment on the small ecological stream under climate change (기후변화에 따른 소하천에서의 수온 모의연구)

  • Park, Jung Sool;Kim, Sam Eun;Kwak, Jaewon;Kim, Jungwook;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.313-323
    • /
    • 2016
  • Water temperature affects physical and biological processes in ecologies on river system and is important conditions for growth rate and spawning of fish species. The objective of this study is to compare models for water temperature during the summer season for the Fourchue River (St-Alexandre-de-Kamouraska, Quebec, Canada). For this, three different models, which are CEQUEAU, Auto-regressive Moving Average with eXogenous input and Nonlinear Autoregressive with eXogenous input, were applied and compared. Also, future water temperature in the Fourchue river were simulated and analyzed its result based on the CMIP5 climate models, RCP 2.6, 4.5, 8.5 climate change scenarios. As the result of the study, the water temperature in the Fourchue river are actually changed and median water temperature will increase $0.2{\sim}0.7^{\circ}C$ in June and could decrease by $0.2{\sim}1.1^{\circ}C$ in September. Also, the UILT ($24.9^{\circ}C$) for brook trout are also likely to occurred for several days.

A Study on the Potential of Agricultural Water and Environmental Flow Supply according to Regulating Lower Control Storage Rate for the Irrigation Reservoir (농업용 저수지의 하한 관리 저수율 설정에 따른 농업용수 및 환경용수 공급 가능성 고찰)

  • Jeong, Jiyeon;Jeung, Minhyuk;Beom, Jina;Park, Minkyeong;Lee, Jaenam;Yoo, Seung-Hwan;Yoon, Kwang-Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.2
    • /
    • pp.21-33
    • /
    • 2023
  • While the main purpose of irrigation reservoirs is to supply agricultural water, the needs of environmental flow and flood control has been expanded. The agricultural reservoirs have been operated in the form of carry-over system until now. Therefore, the supply of agricultural water is difficult when the storage rate is not sufficiently secured after large volume of irrigation. In addition, there are regulation of the upper storage rate for some large reservoirs during the flood season, but lower storage rate is not regulated. Accordingly, this study aims to evaluate the capacity of agricultural water and environmental flow supply by setting the management lower storage rate of reservoir. The changes in the supply of agricultural and environmental flow was simulated according to the three different regulating lower storage rate scenarios. As a result, it was judged effective in terms of water supply managing the lower storage rate up to 30% when the initial storage rate of farming period is above annual average for the Naju reservoir considering existing water management practice. If the lower storage rate would have been controlled above 30%, the supply of agricultural water might be increased and non-effective discharge amount would be decreased compared to other scenarios during dry period of 2016-2018.

Characteristics of Pollutant Load from a Dam Reservoir Watershed - Case study on Seomjinkang Dam Reservoir - (댐저수지 유역의 오염부하 유출특성 - 섬진강댐 저수지를 중심으로 -)

  • Lee, Yo-Sang;Gang, Byeong-Su
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.757-764
    • /
    • 2000
  • The investigation of water quality was performed at the upstream of Seomjinkang dam reservoir for the examination of pollutant load characteristics of the reservoir watershed during flood and normal flow periods. The highest water quality concentration was occurred at Y ongsan during normal flow period where it has been more polluted by population and livestock than other sites. Pollutant load varied depending on the sampling site, rainfall intensity and antecedent precipitation during the rainy period. Based on the water quality data measured from 1998 to 1999, the average concentration during rainy period was much higher than that of non~rainy period: BOD was 1.2~1.4 times, COD 1.2~1.7 times, SS 2.6~5.4 times, T-N 2.3~3.0 times, and T-P 2.4~7.5 times respectively. When the pollutant load measured during 7 different rainy periods in 1999 was compared with total pollutant load in 1999, the BOD and COD load measured during the 7 different rainy periods were 28% that is about 1.6 times as high as those of 1999. On the other hand, the rainfall amount measured during the 7 different rainy periods was about 17.5% of total rainfall amount in 1999. The total pollutant load of TN and TP measured during the 7 different rainy periods was almost 50% of total TN and TP loads in 1999. In case of SS, it was 72.8%. It was concluded that the inflow of pollutants into the lake during the rainy period held a high portion of total inflow in 1999. It was suggested that long~term water quality monitoring be performed to better quantity pollutant load to the lake especially during rainy periods.eriods.

  • PDF

Zooplankton Community Structure and Copepod Production in the Seomjin River Estuary (섬진강 하구역의 동물플랑크톤 군집구조와 요각류 생산력 연구)

  • Youn, Seok-Hyun;Oh, Ghang-Sok;Chung, Mi-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.4
    • /
    • pp.369-379
    • /
    • 2010
  • Zooplankton community structure and copepod production in Seomjin River estuary were investigated at 10 stations along the salinity gradients from May 2009 to February 2010. Total zooplankton taxa were identified to be 31 in the study area and seasonal average abundance of zooplankton was $4,151\;ind.{\cdot}m^{-3}$ during the study period. Zooplankton community was mainly composed of coastal species in dry season. However, brackish species dominated in upper or middle part of this estuary in flood season. This study showed that the growth rates of Acartia spp. and Paracalanus parvus s.l. measured from field experiments were regulated by the variations of Hater temperature and salinity; The annual copepod production estimated by dominant copepod species was $3.49\;g\;C{\cdot}m^{-2}yr^{-1}$, and the relatively high production value could be explained by the high phytoplankton standing stocks and the mass occurrence of coastal and brackish species with relation to various salinity gradients in Seomjin River estuary.

Optimization of Multi-reservoir Operation considering Water Demand Uncertainty in the Han River Basin (수요의 불확실성을 고려한 한강수계 댐 연계 운영 최적화)

  • Chung, Gun-Hui;Ryu, Gwan-Hyeong;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.89-102
    • /
    • 2010
  • Future uncertainty on water demand caused by future climate condition and water consumption leads a difficulty to determine the reservoir operation rule for supplying sufficient water to users. It is, thus, important to operate reservoirs not only for distributing enough water to users using the limited water resources but also for preventing floods and drought under the unknown future condition. In this study, the reservoir storage is determined in the first stage when future condition is unknown, and then, water distribution to users and river stream is optimized using the available water resources from the first stage decision using 2-stage stochastic linear programming (2-SLP). The objective function is to minimize the difference between target and actual water storage in reservoirs and the water shortage in users and river stream. Hedging rule defined by a precaution against severe drought by restricting outflow when reservoir storage decreases below a target, is also applied in the reservoir operation rule for improving the model applicability to the real system. The developed model is applied in a system with five reservoirs in the Han River basin, Korea to optimize the multi-reservoir system under various future water demand scenarios. Three multi-purposed dams - Chungju, Hoengseong, and Soyanggang - are considered in the model. Gwangdong and Hwacheon dams are also considered in the system due to the large capacity of the reservoirs, but they are primarily for water supply and power generation, respectively. As a result, the water demand of users and river stream are satisfied in most cases. The reservoirs are operated successfully to store enough water during the wet season for preparing the coming drought and also for reducing downstream flood risk. The developed model can provide an effective guideline of multi-reservoir operation rules in the basin.

Environmental Windows Setting Method for Environmental-Friendly River Dredging in Nakdong River Basin (낙동강 유역의 친환경 하천 준설을 위한 환경창 수립 방안)

  • Jeong, Anchul;Kim, Seongwon;Kim, Minseok;Jung, Kwansue
    • Journal of Environmental Policy
    • /
    • v.14 no.4
    • /
    • pp.45-61
    • /
    • 2015
  • The river environment in Korea has changed significantly after the completion of the Four Major Rivers Project due to the outdated river management methods and thus, it is necessary to modify the current river management process. A typical example of this management is dredging but it is a method that usually results in socio-environmental side effects. Therefore, in order to minimize the socio-environmental impacts of dredging, Korea is currently applying the Environmental Windows, a management practice currently being used in the United States that eliminates the risk of potentially harmful impacts of dredging. The use of statistical methods was suggested to address the issue of data insufficiency and this methodology was applied in the downstream part of the Gangjeong-Goryeong weir located within the Nakdong river basin. The results show that when performing a month of dredging, the optimal period is March whereas the optimal month to start dredging is August in case of an eight-month dredging project. If Korea's flood season is also considered for an eight-month dredging process, then October is the optimal month to start dredging. Non-structural methods such as the Environmental Windows reduce maintenance costs and also bring only short-term side effects to the environment, as opposed to structural methods such as the development of environmentally-friendly dredging machine. Given that few studies have explored this topic in Korea, the findings and suggestions could serve as basic data in studying river dredging in the future.

  • PDF