• Title/Summary/Keyword: Flood inundation model

Search Result 246, Processing Time 0.024 seconds

Impact of Bidirectional Interaction between Sewer and Surface flow on 2011 Urban Flooding in Sadang stream watershed, Korea

  • Pakdimanivong, Mary;Kim, Yeonsu;Jung, Kwansue;Li, Heng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.397-397
    • /
    • 2015
  • The frequency of urban floods is recently increased as a consequence of climate change and haphazard development in urban area. To mitigate and prevent the flood damage, we generally utilized a numerical model to investigate the causes and risk of urban flood. Contrary to general flood inundation model simulating only the surface flow, the model needs to consider flow of the sewer network system like SWMM and ILLUDAS. However, this kind of model can not consider the interaction between the surface flow and drainage network. Therefore, we tried to evaluate the impact of bidirectional interaction between sewer and surface flow in urban flooding analysis based on simulations using the quasi-interacted model and the interacted model. As a general quasi-interacted model, SWMM5 and FLUMEN are utilized to analyze the flow of drainage network and simulate the inundation area, respectively. Then, FLO-2D is introduced to consider the interaction between the surface flow and sewer system. The two method applied to the biggest flood event occurred in July 2011 in Sadang area, South Korea. Based on the comparison with observation data, we confirmed that the model considering the interaction the sewer network and surface flow, showed a good agreement than the quasi-interacted model.

  • PDF

Analysis on Inundation Characteristics for Flood Impact Forecasting in Gangnam Drainage Basin (강남지역 홍수영향예보를 위한 침수특성 분석)

  • Lee, Byong-Ju
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.189-197
    • /
    • 2017
  • Progressing from weather forecasts and warnings to multi-hazard impact-based forecast and warning services represents a paradigm shift in service delivery. Urban flooding is a typical meteorological disaster. This study proposes support plan for urban flooding impact-based forecast by providing inundation risk matrix. To achieve this goal, we first configured storm sewer management model (SWMM) to analyze 1D pipe networks and then grid based inundation analysis model (GIAM) to analyze 2D inundation depth over the Gangnam drainage area with $7.4km^2$. The accuracy of the simulated inundation results for heavy rainfall in 2010 and 2011 are 0.61 and 0.57 in POD index, respectively. 20 inundation scenarios responding on rainfall scenarios with 10~200 mm interval are produced for 60 and 120 minutes of rainfall duration. When the inundation damage thresholds are defined as pre-occurrence stage, occurrence stage to $0.01km^2$, 0.01 to $0.1km^2$, and $0.1km^2$ or more in area with a depth of 0.5 m or more, rainfall thresholds responding on each inundation damage threshold results in: 0 to 20 mm, 20 to 50 mm, 50 to 80 mm, and 80 mm or more in the rainfall duration 60 minutes and 0 to 30 mm, 30 to 70 mm, 70 to 110 mm, and 110 mm or more in the rainfall duration 120 minutes. Rainfall thresholds as a trigger of urban inundation damage can be used to form an inundation risk matrix. It is expected to be used for urban flood impact forecasting.

A Numerical Simulation of Flood Inundation in a Coastal Urban Area: Application to Gohyun River in GeojeIsland in Korea

  • Jeong, Woochang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.241-241
    • /
    • 2015
  • In this study, the simulations and analyses of flood flow due to a river inundation in a coastal urban area are carried out using a two-dimensional finite volume method with well-balanced HLLC scheme. The target area is a coastal urban area around Gohyun river which is located at Geoje city in Kyungnam province in Korea and was extremely damaged due to the heavy rainfall during the period of the typhoon "Maemi" in September 2003. For the purpose of the verification of the numerical model applied in this study, the simulated results are compared and analyzed with the inundation traces. Moreover, the flood flow in a urban area is simulated and analyzed based on the scenarios of inflow to the river with the increase and decrease of the intensity of the heavy rainfall.

  • PDF

Development of distributed inundation routing method using SIMOD method (SIMOD 기법을 이용한 분포형 침수 추적 기법 개발)

  • Lee, Suk Ho;Lee, Dong Seop;Kim, Jin Man;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.579-588
    • /
    • 2016
  • Changes in precipitation due to climate change is made to induce the local and intensive rainfall, it is increasing damage caused by inland inundation. Therefore, it requires a technique for predicting damage caused by flooding. In this study, in order to determine whether this flood inundated by any route when the levee was destroyed, Which can simulate the path of the flood inundation model was developed for the SIMOD (Simplified Inundation MODel). Multi Direction Method (MDM) for differential distributing the adjacent cells by using the slope and Flat-Water Assumption (FWA)-If more than one level higher in the cell adjacent to the cell level is the lowest altitude that increases the water level is equal to the adjacent cells- were applied For the evaluation of the model by setting the flooding scenarios were estimated hourly range from the target area. SIMOD model can significantly reduce simulation time because they use a simple input data of topography (DEM) and inflow flood. Since it is possible to predict results within minutes, if you can only identify inflow flood through the runoff model or levee collapse model. Therefore, it could be used to establish an evacuation plan due to flooding, such as EAP (Emergency Action Plan).

A Study on Numerical Simulation of Flood Inundation in a Coastal Urban Areas: Application to Gohyun River in Geoje City, Kyungnam Province (해안도시지역 홍수범람모의에 관한 연구: 경상남도 거제시 고현천 적용사례)

  • Jeong, Woochang
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1093-1105
    • /
    • 2012
  • In this study, the simulations and analyses of flood flow due to a river inundation in a coastal urban area are carried out using a two-dimensional finite volume model with well-balanced HLLC scheme. The target area is a coastal urban area around Gohyun river which is located at Geoje city in Kyungnam province and was extremely damaged due to the heavy rainfall during the period of the typhoon "Maemi" in September 2003. For the purpose of the verification of the numerical model applied in this study, the simulated results are compared and analyzed with the inundation traces. In addition, the flood flow in an urban area is simulated and analyzed according to the scenarios of inflow variation due to the increase and decrease of the intensity of the heavy rainfall, which.

Development of Flood Prediction Model using Hydrologic Observations in Cheonggye Stream (수문관측 기반의 청계천 홍수예측모델 구축)

  • Bae, Deg-Hyo;Jeong, Chang Sam;Yoon, Seong Sim
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.683-690
    • /
    • 2008
  • The objectives of this study are to provide an observation-based urban flood prediction model and to evaluate their performance on a restored Cheonggye stream. The study area, which has its own unique hydrologic and flooding conditions that can be characterized the standard of flood occurrence by watergate opening and walk lane inundation, measured stream discharges at the 5 sites and watergate opening and walk lane inundation through the main stream since 2006. This study derived the relationship between precipitation intensity and watergate opening and walk lane inundation time by using the observations of 2006 and verified their performance on 2007 flood events. The result showed that the coefficients of determination are ranged on 0.57-0.75, which would be acceptable if considering the complexity of the area and the proposed model simplicity. It also suggested the continuous observation of these properties is required for further improvement of the models.

Applications of a GIS-based Paddy Inundation Simulation System (GIS 기반 농경지 침수모의시스템의 구축 및 적용)

  • Kim , Sang-Min;Park , Chong-Min;Park , Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.107-116
    • /
    • 2004
  • A GIS-based paddy inundation simulation system which is capable of simulating temporal and spatial inundation processes was established and applied in this paper. The system is composed of HEC-GeoHMS, and HEC-GeoRAS modules which interface the GIS and flood runoff models, and HEC-HMS, and HEC-RAS models which estimate the flood runoff. It was used to simulate storm runoff and inundation for a small rural watershed, the Baran HP#7, which is 10.69 $km^2$ in size. The simulated peak runoff, time to peak, and total direct runoff for eight storms were compared with the observed data. The results showed that the coefficient of determination ($R^2$) for the observed peak runoff was 0.99 and an error, RMSE, 11.862 $m^3$/s for calibration stages. In the model verification, $R^2$ was 0.99 and RMSE 1.296 $m^3$/s. Paddy inundation for each paddy growing stages in study watershed were estimated using verified inundation simulation system when probability rainfall was applied.

Development of Estimation Technique for Rice Yield Reduction by Inundation Damage (침수피해에 의한 벼 감수량 추정기법 개발)

  • Park , Jong-Min;Kim , Sang-Min;Seong, Chung-Hyun;Park, Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.89-98
    • /
    • 2004
  • The amount of rice yield reduction due to inundation should be estimated to analyse economic efficiency of the farmland drainage improvement projects because those projects are generally promoted to mitigate flood inundation damage to rice in Korea. Estimation of rice yield reduction will also provide information on the flood risk performance to farmers. This study presented the relationships between inundated durations and rice yield reduction rates for different rice growth stages from the observed data collected from 1966 to 2000 in Korea, and developed the rice yield reduction estimation model (RYREM). RYREM was applied to the test watershed for estimating the rice yield reduction rates and the amount of expected average annual rice yield reduction by the rainfalls with 48 hours duration, 10, 20, 50, 100, 200 years return periods.

Improving streamflow and flood predictions through computational simulations, machine learning and uncertainty quantification

  • Venkatesh Merwade;Siddharth Saksena;Pin-ChingLi;TaoHuang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.29-29
    • /
    • 2023
  • To mitigate the damaging impacts of floods, accurate prediction of runoff, streamflow and flood inundation is needed. Conventional approach of simulating hydrology and hydraulics using loosely coupled models cannot capture the complex dynamics of surface and sub-surface processes. Additionally, the scarcity of data in ungauged basins and quality of data in gauged basins add uncertainty to model predictions, which need to be quantified. In this presentation, first the role of integrated modeling on creating accurate flood simulations and inundation maps will be presented with specific focus on urban environments. Next, the use of machine learning in producing streamflow predictions will be presented with specific focus on incorporating covariate shift and the application of theory guided machine learning. Finally, a framework to quantify the uncertainty in flood models using Hierarchical Bayesian Modeling Averaging will be presented. Overall, this presentation will highlight that creating accurate information on flood magnitude and extent requires innovation and advancement in different aspects related to hydrologic predictions.

  • PDF

Flood Inundation Analysis in Urban Area Using XP-SWMM (XP-SWMM 모형을 이용한 도심지역 침수해석)

  • Kim, Jinsu;Lee, Wonho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.1
    • /
    • pp.29-36
    • /
    • 2015
  • Current domestic research is to demonstrate the effectiveness and efficiencies of flood prevention measures through one-dimensional numerical analysis and this study's object is to help water managers to make the efficient decisions by applying the two-dimensional urban run off model XP-SWMM model in the flooded area and comparing with the flood prevention measures. Statistics were analyzed, based on the data collected from Cheongju Weather Service from 1967 to 2011 for 45 years. 50 years Flood frequency simulations of water flow capacity analysis of the target area for flooded areas $539,548m^2$, inundation depth 1.0 m, was analyzed by inundation time of 48 minutes. When comparing with the constructions of bypass road and underground storage facilities to increase the water flow capacity of A1 small drainage areas as flood protection, if you install a batching target underground detention basin with a capacity of $13,500m^3$, it is expected that the flood by rainfall with frequency of 50 years will be resolved completely. In preparation for extreme weather in the future flood mitigation measures, underground storage tank installation is considered a better efficient way.