• Title/Summary/Keyword: Flood frequency

Search Result 459, Processing Time 0.025 seconds

An Estimation of Flood Quantiles at Ungauged Locations by Index Flood Frequency Curves (지표홍수 빈도곡선의 개발에 의한 미 계측지점의 확률 홍수량 추정)

  • Yoon, Yong-Nam;Shin, Chang-Kun;Jang, Su-Hyung
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • The study shows the possible use of the index flood frequency curves for an estimation of flood quantiles at ungauged locations. Flood frequency analysis were made for the annual maximum flood data series at 9 available stations in the Han river basin. From the flood frquency curve at each station the mean annual flood of 2.33-year return period was determined and the ratios of the flood magnitude of various return period to the mean annual flood at each station were averaged throughout the Han river basin, resulting mean flood ratios of different return periods. A correlation analysis was made between the mean annual flood and physiographic parameters of the watersheds i.e, the watershed area and mean river channel slope, resulting an empirical multiple linear regression equation over the whole Han river basin. For unguaged watershed the flood of a specified return period could be estimated by multiplying the mead flood ratio corresponding the return period with the mean annual flood computed by the empirical formula developed in terms of the watershed area and river channel slope. To verify the applicability of the methodology developed in the present study the floods of various return periods determined for the watershed in the river channel improvement plan formulation by the Ministry of Construction and Transportation(MOCT) were compared with those estimated by the present method. The result proved a resonable agreement up to the watershed area of approximately 2,000k $m^2$. It is suggested that the practice of design flood estimation based on the rainfall-runoff analysis might have to be reevaluated because it involves too much uncertainties in the hydrologic data and rainfall-runoff model calibration.

Application of New Version of Flood Frequency Analysis (Bulletin 17C) (미국의 새로운 홍수빈도해석 가이드라인(Bulletin 17C)의 적용)

  • Lee, Taesam;England, John F.;Son, Chanyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.247-253
    • /
    • 2017
  • Accurate flood frequency and magnitude estimation has a critical role in flood risk management and damage reduction. In United States, Log Pearson Type-III (LP-III) distribution with method of moments for parameter estimation has been uniformly and consistently employed in estimating design floods. After the first version of flood frequency guidelines (Bulletin 15) was published in 1967, the revised version Bulletin 17B has been employed since 1982 up to now. A new version of flood frequency guidelines, Bulletin 17C, is prepared and about to come out soon. In the current study, we analyzed the new features of the upcoming Bulletin 17C and presented case studies applying its new features. From the presented results, we see what critical components in the new design flood frequency guideline we could learn.

Risk of Flood Damage Potential and Design Frequency (홍수피해발생 잠재위험도와 기왕최대강수량을 이용한 설계빈도의 연계)

  • Park, Seok Geun;Lee, Keon Haeng;Kyung, Min Soo;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.489-499
    • /
    • 2006
  • The Potential Flood Damage (PFD) is widely used for representing the degree of potential of flood damage. However, this cannot be related with the design frequency of river basin and so we have difficulty in the use of water resources field. Therefore, in this study, the concept of Potential Risk for Flood Damage Occurrence (PRFD) was introduced and estimated, which can be related to the design frequency. The PRFD has three important elements of hazard, exposure, and vulnerability. The hazard means a probability of occurrence of flood event, the exposure represents the degree that the property is exposed in the flood hazard, and the vulnerability represents the degree of weakness of the measures for flood prevention. Those elements were devided into some sub-elements. The hazard is explained by the frequency based rainfall, the exposure has two sub-elements which are population density and official land price, and the vulnerability has two sub-elements which are undevelopedness index and ability of flood defence. Each sub-elements are estimated and the estimated values are rearranged in the range of 0 to 100. The Analytic Hierarchy Process (AHP) is also applied to determine weighting coefficients in the equation of PRFD. The PRFD for the Anyang river basin and the design frequency are estimated by using the maximum rainfall. The existing design frequency for Anyang river basin is in the range of 50 to 200. And the design frequency estimation result of PRFD of this study is in the range of 110 to 130. Therefore, the developed method for the estimation of PRFD and the design frequency for the administrative districts are used and the method for the watershed and the river channel are to be applied in the future study.

CAUTION OF REGIONAL FLOOD FREQUENCY ANALYSIS BASED ON WEIBULL MODEL

  • Heo, Jun-Haeng;Lee, Dong-Jin;Kim, Kyung-Duk
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.11-23
    • /
    • 2000
  • Regional flood frequency analysis has been developed by employing the nearby site's information to improve a precision in estimating flood quantiles at the site of interest. In this paper, single site and regional flood frequency analyses were compared based of the 2-parameter Weibull model. For regional analysis, two approaches were employed. The First one is to use the asymptotic variances of the quantile estimators derived based of the assumption that all sites including the site of interest are independent each other. This approach may give the maximum regional gain due to the spatial independence assumption among sites. The second one in Hosking's regional L-moment algorithm. These methods were applied to annual flood data. As the results, both methods generally showed the regional gain at the site of interest depending on grouping the sites as homogeneous. And asymptotic formula generally shows smaller variance than those from Hosking's algorithm. If the shape parameter of the site of interest from single site analysis is quite different from that from regional analysis then Hosking's results might be better than the asymptotic ones because the formula was derived based on the assumption that all sites have the same regional shape parameter. Furthermore, in such a case, regional analysis might be worse than single site analysis in the sense of precision of flood quantile estimation. Even though the selected sites may satisfy Hosking's criteria, regional analysis may not give a regional gain for specific and nonexceedance probabilities.

  • PDF

Development of Estimation Technique for Inundation Area by Frequency using GIS (GIS를 활용한 빈도별 침수구역 예측기법 개발)

  • Lee, Byongju;Choi, Cheulgwan;Kim, Yangsu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.671-675
    • /
    • 2004
  • The objective of this study is to develope estimation techniques of flood inundation area for given rainfall frequency using GIS. For this, Namdae-cheon is selected as pilot station and Inundation area is estimated with routing of flood volume from river mouth to upstream. As a results inundation area of Namdae-cheon estimated with $1.5km^2\~9.7km^2$ for $5\~500$ frequency years. In addition it is noted that results of this study can use in flood risk analysis for establishment of flood countermeasures.

  • PDF

Regional frequency analysis using spatial data extension method : II .Flood frequency inference for ungaged watersheds (공간확장자료를 이용한 지역빈도분석 : II. 미계측 유역의 홍수빈도 추론)

  • Kim, Nam Won;Lee, Jeong Eun;Lee, Jeongwoo;Jung, Yong
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.5
    • /
    • pp.451-458
    • /
    • 2016
  • In order to infer regional flood frequency for ungauged watersheds, index flood method was applied for this study. To pursuit this given purpose, annual peak flood data for 22 watersheds located at the upstream of the Chungju Dam watershed were obtained from the spatial extension technique. The regionalization of mean annual flood was performed from extended flood data at 22 points. Based on the theory that flood discharge and watershed size follows the power law the regionalization generated the empirical relationship. These analyses were executed for the full size of the Chungju Dam watershed as one group and three different mid-size watersheds groups. From the results, the relationship between mean annual flood and watershed sizes follow the power law. We demonstrated that it is appropriate to use the relationship between specific flood discharges from the upper and lower watersheds in terms of estimating the floods for the ungaged watersheds. Therefore, not only the procedure of regional frequency analysis but also regionalizaion analaysis using finer discretization of the regions interest with respect to the regional frequency analyisis for the ungauged watersheds is important.

Safety Analysis of the Flood Control of Urban River in Flash Flood (돌발홍수 발생시 도시하천의 치수안전도 분석)

  • Park, Ho-Sang;Sim, Ou-Bae;Song, Jai-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.3 s.10
    • /
    • pp.125-132
    • /
    • 2003
  • In this study, safety analysis of river in flash flood due to local extraordinary rainfall was conducted for the Hong-Je river, which was selected as a representative sample basin because it is one of the most urbanized rivers in Seoul. The rainfall data of precipitation 310.1 mm and probable maximum precipitation (PMP) 740.0 mm in July $14{\sim}15$, 2001 was used to perform safety analysis. Resulting of safety analysis of the flood control in Hong-Je river, case of the 50 year of design frequency, safety section, management section, and danger section were represented to be 85%, 15%, and 0% respectively. For the 200 year of design frequency, safety section decreased by 6% and management section and danger section increment by 4% and 2%, respectively, The variation of management section was not observed with respect to 200 year of frequency. Little variation of safety value for management section for 300 and 500 of frequency increased by 8% and 12% relative to 50 year of frequency, respectively. management section and danger section for 1000 year of frequency increased by 19% and 13% relative to 50 year of frequency.

A Flood Routing for the Downstream of the Kum River Basin due to the Teachong Dam Discharge (대청댐 방류에 따른 금강 하류부의 홍수추적)

  • Park, Bong-Jin;Gang, Gwon-Su;Jeong, Gwan-Su
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.2
    • /
    • pp.131-141
    • /
    • 1997
  • In this study, the Storage Function Method and Loopnet Model (Unsteady flow analysis model) were used to construct the flood prediction system which can predict the effects of the water release in the downstream region of Teachong Dam. The regional frequency analysis (L-moment) was applied to compute frequency-based precipitation, and the flood prediction system was also used for flood routing of the down stream region of Teachong Dam in the Kum River Basin to calculate frequency based flood. The magnitude of flood, water level, discharge, and travel time to the major points of the downstream region of Teachong Dam, which can be used as an imdex of flood control management of Teachong Dam, were calculated.

  • PDF

Relationship between Flood Characteristics and Underground Inundation (홍수특성과 지하공간침수의 관계 검토)

  • Lee, Dae-Young;Lee, Keon-Haeng;Kyoung, Min-Soo;Kim, Hung-Soo
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.367-370
    • /
    • 2007
  • In recent, the utilization of underground in urban area is increased as subway, store, and others but we have done a few studies for the inundation of underground due to flooding. So, we investigate the examples of underground inundation and the causes of inundation for flood events. And the relationship between flood characteristics and underground inundation is analyzed through the frequency of rainfall which is made by annual multi maximum series. As a result, most of underground is inundated by high frequency of rainfall. And there are some cases that the underground is inundated by low frequency of rainfall because of poor drainage system and characteristics of location.

  • PDF

The Statistical Model for Predicting Flood Frequency

  • Noh, Jae-Sik;Lee, Kil-Choon
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.51-63
    • /
    • 1993
  • This study is to verify the applicability of statistical models in predicting flood frequency at the stage gaging stations of which the flow is under natural condition in the Han River basin. The results of the study show that the statistical flood frequency models were proven to be fairly reasonable to apply in practice, and also were compared with sampling variance to calibrate the statistical efficiency of the estimators of the T year floods Q(T) by two different flood frequency models. As a result, it was showed that for return periods greater than about T = 10 years the annual exceedance series estimators of Q(T) has smaller sampling variance than the annual maximum series estimators. It was showed that for the range of return periods the partial duration series estimators of !(T) has smaller sampling variance than the annual maximum series estimate only if the POT model contains at least 2N(N : record length) items or more in order to estimate Q(T) more efficiently than the ANNMAX model.

  • PDF